

California Independent System Operator

## 2018 LOCAL CAPACITY TECHNICAL ANALYSIS

## DRAFT REPORT AND STUDY RESULTS

March 28, 2013

## Local Capacity Technical Analysis Overview and Study Results

#### I. Executive Summary

This Report documents the results and recommendations of the 2018 Long-Term Local Capacity Technical (LCT) Study. The LCT Study objectives, inputs, methodologies and assumptions are the same as those discussed in the 2014 LCT Study to be adopted by the CAISO and CPUC in their 2014 Local Resource Adequacy needs.

Overall, the LCR trended is upward by about 800 MW mainly due to higher LA Basin requirements. It is worth mentioning the following areas: (1) Humboldt, Bay Area, Kern, Big Creek/Ventura and San Diego, where the LCR has increased mostly due to load forecast; (2) LA Basin, where the LCR has significantly increased mostly due to higher LCR requirements for the West of Devers and Valley-Devers sub-areas.

The following areas do not conform to the overall trend: (1) Stockton, where the LCR was reduced mostly due to more effective new resource dispatch; (2) North Coast/North Bay, where the LCR was reduced mainly due to changes in the load distribution in the area as well as Bay Area resource dispatch; and (3) Sierra where the LCR needs have decreased as well as Fresno and Valley Electric Area where LCR needs are the same all due to new transmission projects.

For comparison below you will find the 2014 and 2018 total LCR needs.

1

## 2014 Local Capacity Needs

|                                       | Qualifying Capacity |       |                                | 2014 LCR Need Based<br>on Category B |               |                                | 2014 LCR Need Based<br>on Category C with<br>operating procedure |               |       |
|---------------------------------------|---------------------|-------|--------------------------------|--------------------------------------|---------------|--------------------------------|------------------------------------------------------------------|---------------|-------|
| Local Area Name                       | Muni Market Total   |       | Existing<br>Capacity<br>Needed | Defici<br>ency                       | Total<br>(MW) | Existing<br>Capacity<br>Needed | Defici<br>ency                                                   | Total<br>(MW) |       |
| Humboldt                              | 70                  | 173   | 243                            | 145                                  | 0             | 145                            | 195                                                              | 0             | 195   |
| North Coast/<br>North Bay             | 150                 | 771   | 921                            | 623                                  | 0             | 623                            | 623                                                              | 0             | 623   |
| Sierra                                | 1288                | 762   | 2050                           | 1414                                 | 0             | 1414                           | 1803                                                             | 285           | 2088  |
| Stockton                              | 212                 | 392   | 604                            | 354                                  | 25            | 379                            | 446                                                              | 255           | 701   |
| Greater Bay                           | 1336                | 6280  | 7616                           | 3747                                 | 0             | 3747                           | 4423                                                             | 215           | 4638  |
| Greater Fresno                        | 318                 | 2510  | 2828                           | 1857                                 | 0             | 1857                           | 1857                                                             | 0             | 1857  |
| Kern                                  | 613                 | 64    | 677                            | 421                                  | 14            | 435                            | 421                                                              | 44            | 465   |
| LA Basin                              | 2242                | 9547  | 11789                          | 10063                                | 0             | 10063                          | 10430                                                            | 0             | 10430 |
| Big Creek/Ventura                     | 1112                | 4206  | 5318                           | 2156                                 | 0             | 2156                           | 2250                                                             | 0             | 2250  |
| Greater San Diego/<br>Imperial Valley | 200                 | 4506  | 4706                           | 3605                                 | 167           | 3772                           | 3605                                                             | 458           | 4063  |
| Total                                 | 7541                | 29211 | 36752                          | 24385                                | 206           | 24591                          | 26053                                                            | 1257          | 27310 |

## 2018 Local Capacity Needs

|                                       | Qualifying Capacity |       |                                | 2018 LCR Need Based<br>on Category B |               |                                | 2018 LCR Need Based<br>on Category C with<br>operating procedure |               |       |
|---------------------------------------|---------------------|-------|--------------------------------|--------------------------------------|---------------|--------------------------------|------------------------------------------------------------------|---------------|-------|
| Local Area Name                       |                     |       | Existing<br>Capacity<br>Needed | Defici<br>ency                       | Total<br>(MW) | Existing<br>Capacity<br>Needed | Defici<br>ency                                                   | Total<br>(MW) |       |
| Humboldt                              | 70                  | 173   | 243                            | 149                                  | 0             | 149                            | 197                                                              | 0             | 197   |
| North Coast/<br>North Bay             | 150                 | 771   | 921                            | 424                                  | 0             | 424                            | 424                                                              | 0             | 424   |
| Sierra                                | 1288                | 762   | 2050                           | 864                                  | 26            | 890                            | 1114                                                             | 39            | 1153  |
| Stockton                              | 212                 | 392   | 604                            | 284                                  | 0             | 284                            | 374                                                              | 44            | 418   |
| Greater Bay                           | 1426                | 6932  | 8358                           | 3860                                 | 0             | 3860                           | 4478                                                             | 8             | 4486  |
| Greater Fresno                        | 318                 | 2510  | 2828                           | 2110                                 | 0             | 2110                           | 2110                                                             | 0             | 2110  |
| Kern                                  | 613                 | 64    | 677                            | 421                                  | 26            | 447                            | 421                                                              | 56            | 477   |
| LA Basin                              | 4488                | 9547  | 14035                          | 9882                                 | 0             | 9882                           | 11071                                                            | 0             | 11071 |
| Big Creek/Ventura                     | 1112                | 4206  | 5318                           | 2397                                 | 0             | 2397                           | 2688                                                             | 0             | 2688  |
| Greater San Diego/<br>Imperial Valley | 262                 | 5914  | 6176                           | 3310                                 | 0             | 3310                           | 3310                                                             | 30            | 3340  |
| Total                                 | 9939                | 31271 | 41210                          | 23701                                | 52            | 23753                          | 26187                                                            | 177           | 26364 |

\* No local area is "overall deficient". Resource deficiency values result from a few deficient sub-areas; and since there are no resources that can mitigate this deficiency the numbers are carried forward into the total area needs. Resource deficient sub-area implies that in order to comply with the criteria, at summer peak, load may be shed immediately after the first contingency.

The write-up for each Local Capacity Area lists important new projects included in the base cases as well as a description of reason for changes between the 2017 Long-Term LCR study and this 2018 Long-Term LCR study.

## Table of Contents

| I.   | Executive Summary                                                                                                                   | 1         |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
| II.  | Overview of the Study: Inputs, Outputs and Options                                                                                  | 5         |
| A    | Objectives                                                                                                                          | . 5       |
| В    | . Key Study Assumptions                                                                                                             |           |
| C    | Grid Reliability                                                                                                                    | . 7       |
| D    | Application of N-1, N-1-1, and N-2 Criteria                                                                                         | 8         |
| E    | Performance Criteria                                                                                                                | . 8       |
| F    | <ol> <li>The Two Options Presented In This LCT Report</li></ol>                                                                     | 15<br>nal |
| III. | Assumption Details: How the Study was Conducted                                                                                     | 15        |
| A    | <ol> <li>System Planning Criteria</li></ol>                                                                                         | 17<br>18  |
| В    | <ol> <li>Load Forecast</li> <li>System Forecast</li> <li>Base Case Load Development Method</li> </ol>                               | 18        |
| C    | Power Flow Program Used in the LCR analysis                                                                                         | 20        |
| IV.  | Locational Capacity Requirement Study Results                                                                                       | 21        |
| A    |                                                                                                                                     |           |
| B    |                                                                                                                                     | 23        |
|      | <ol> <li>North Coast / North Bay Area</li> <li>Sierra Area</li> </ol>                                                               | 27<br>32  |
|      | <ol> <li>Stockton Area</li> <li>Greater Bay Area</li> <li>Greater Fresno Area</li> </ol>                                            | 47        |
|      | <ul> <li>7. Kern Area</li></ul>                                                                                                     | 61        |
|      | <ul> <li>9. Big Creek/Ventura Area</li> <li>10. Greater San Diego-Imperial Valley Area</li> <li>11. Valley Electric Area</li> </ul> | 89        |

#### II. Overview of the Study: Inputs, Outputs and Options

#### A. Objectives

As was the objective of all previous LCT Studies, the intent of the 2018 Long-Term LCT Study is to identify specific areas within the CAISO Balancing Authority Area that have limited import capability and determine the minimum generation capacity (MW) necessary to mitigate the local reliability problems in those areas.

#### B. Key Study Assumptions

#### Inputs and Methodology

The CAISO used the same Inputs and Methodology as does agreed upon by interested parties previously incorporated into the 2014 LCR Study. The following table sets forth a summary of the approved inputs and methodology that have been used in the previous 2014 LCR Study as well as this 2018 LCR Study:

| Issue:                                                                                                       | HOW INCORPORATED INTO THIS LCR<br>STUDY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input Assumptions:                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Transmission System     Configuration                                                                        | The existing transmission system has been modeled, including<br>all projects operational on or before June 1, of the study year<br>and all other feasible operational solutions brought forth by the<br>PTOs and as agreed to by the CAISO.                                                                                                                                                                                                                                                                                           |
| Generation Modeled                                                                                           | The existing generation resources has been modeled and also<br>includes all projects that will be on-line and commercial on or<br>before June 1, of the study year                                                                                                                                                                                                                                                                                                                                                                    |
| Load Forecast                                                                                                | Uses a 1-in-10 year summer peak load forecast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Methodology:                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Maximize Import Capability                                                                                   | Import capability into the load pocket has been maximized, thus<br>minimizing the generation required in the load pocket to meet<br>applicable reliability requirements.                                                                                                                                                                                                                                                                                                                                                              |
| QF/Nuclear/State/Federal     Units                                                                           | Regulatory Must-take and similarly situated units like<br>QF/Nuclear/State/Federal resources have been modeled on-line<br>at qualifying capacity output values for purposes of this LCR<br>Study.                                                                                                                                                                                                                                                                                                                                     |
| <u>Maintaining Path Flows</u>                                                                                | Path flows have been maintained below all established path<br>ratings into the load pockets, including the 500 kV. For<br>clarification, given the existing transmission system<br>configuration, the only 500 kV path that flows directly into a<br>load pocket and will, therefore, be considered in this LCR Study<br>is the South of Lugo transfer path flowing into the LA Basin.                                                                                                                                                |
| Performance Criteria:                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Performance Level B & C,<br>including incorporation of<br>PTO operational solutions                          | This LCR Study is being published based on Performance Level<br>B and Performance Level C criterion, yielding the low and high<br>range LCR scenarios. In addition, the CAISO will incorporate<br>all new projects and other feasible and CAISO-approved<br>operational solutions brought forth by the PTOs that can be<br>operational on or before June 1, of the study year. Any such<br>solutions that can reduce the need for procurement to meet the<br>Performance Level C criteria will be incorporated into the LCR<br>Study. |
| Load Pocket:                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fixed Boundary, including<br><u>limited reference to</u><br><u>published effectiveness</u><br><u>factors</u> | This LCR Study has been produced based on load pockets<br>defined by a fixed boundary. The CAISO only publishes<br>effectiveness factors where they are useful in facilitating<br>procurement where excess capacity exists within a load pocket.                                                                                                                                                                                                                                                                                      |

Further details regarding the 2014 as well as 2018 LCR Study methodology and assumptions are provided in Section III, below.

#### C. Grid Reliability

Service reliability builds from grid reliability because grid reliability is reflected in the planning standards of the Western Electricity Coordinating Council ("WECC") that incorporate standards set by the North American Electric Reliability Council ("NERC") (collectively "NERC Planning Standards"). The NERC Planning Standards apply to the interconnected electric system in the United States and are intended to address the reality that within an integrated network, whatever one Balancing Authority Area does can affect the reliability of other Balancing Authority Areas. Consistent with the mandatory nature of the NERC Planning Standards, the CAISO is under a statutory obligation to ensure efficient use and reliable operation of the transmission grid consistent with achievement of the NERC Planning Standards.<sup>1</sup> The CAISO is further under an obligation, pursuant to its FERC-approved Transmission Control Agreement, to secure compliance with all "Applicable Reliability Criteria." Applicable Reliability Criteria adopted by the CAISO, in consultation with the CAISO's Participating Transmission Owners ("PTOs"), which affect a PTO's individual system.

The NERC Planning Standards define reliability on interconnected electric systems using the terms "adequacy" and "security." "Adequacy" is the ability of the electric systems to supply the aggregate electrical demand and energy requirements of their customers at all times, taking into account physical characteristics of the transmission system such as transmission ratings and scheduled and reasonably expected unscheduled outages of system elements. "Security" is the ability of the electric systems to withstand sudden disturbances such as electric short circuits or unanticipated loss of system elements. The NERC Planning Standards are organized by Performance Categories. Certain categories require that the grid operator not only ensure that grid integrity is maintained under certain adverse system conditions (e.g.,

<sup>&</sup>lt;sup>1</sup> Pub. Utilities Code § 345

security), but also that all customers continue to receive electric supply to meet demand (e.g., adequacy). In that case, grid reliability and service reliability would overlap. But there are other levels of performance where security can be maintained without ensuring adequacy.

#### D. Application of N-1, N-1-1, and N-2 Criteria

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions (N-0) the CAISO must protect for all single contingencies (N-1) and common mode (N-2) double line outages. Also, after a single contingency, the CAISO must re-adjust the system to support the loss of the next most stringent contingency. This is referred to as the N-1-1 condition.

The N-1-1 vs N-2 terminology was introduced only as a mere temporal differentiation between two existing NERC Category C events. N-1-1 represents NERC Category C3 ("category B contingency, manual system adjustment, followed by another category B contingency"). The N-2 represents NERC Category C5 ("any two circuits of a multiple circuit tower line") as well as WECC-S2 (for 500 kV only) ("any two circuits in the same right-of-way") with no manual system adjustment between the two contingencies.

#### E. Performance Criteria

As set forth on the Summary Table of Inputs and Methodology, this LCR Report is based on NERC Performance Level B and Performance Level C criterion. The NERC Standards refer mainly to thermal overloads. However, the CAISO also tests the electric system in regards to the dynamic and reactive margin compliance with the existing WECC standards for the same NERC performance levels. These Performance Levels can be described as follows:

8

#### a. <u>Performance Criteria- Category B</u>

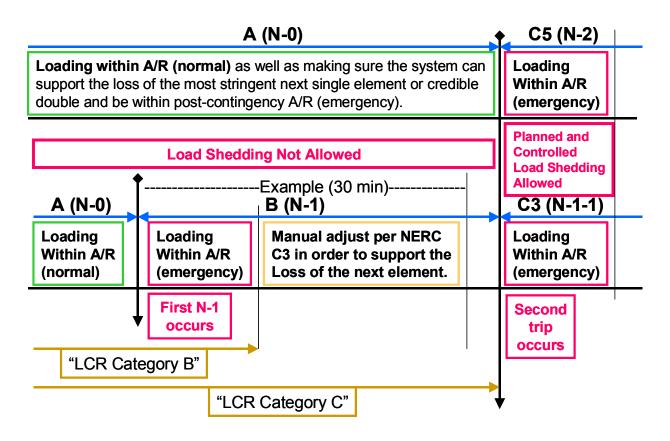
Category B describes the system performance that is expected immediately following the loss of a single transmission element, such as a transmission circuit, a generator, or a transformer.

Category B system performance requires that all thermal and voltage limits must be within their "Applicable Rating," which, in this case, are the emergency ratings as generally determined by the PTO or facility owner. Applicable Rating includes a temporal element such that emergency ratings can only be maintained for certain duration. Under this category, load cannot be shed in order to assure the Applicable Ratings are met however there is no guarantee that facilities are returned to within normal ratings or to a state where it is safe to continue to operate the system in a reliable manner such that the next element out will not cause a violation of the Applicable Ratings.

#### b. <u>Performance Criteria- Category C</u>

The NERC Planning Standards require system operators to "look forward" to make sure they safely prepare for the "next" N-1 following the loss of the "first" N-1 (stay within Applicable Ratings after the "next" N-1). This is commonly referred to as N-1-1. Because it is assumed that some time exists between the "first" and "next" element losses, operating personnel may make any reasonable and feasible adjustments to the system to prepare for the loss of the second element, including, operating procedures, dispatching generation, moving load from one substation to another to reduce equipment loading, dispatching operating personnel to specific station locations to manually adjust load from the substation site, or installing a "Special Protection Scheme" that would remove pre-identified load from service upon the loss of the "next"

9


element.<sup>2</sup> All Category C requirements in this report refer to situations when in real time (N-0) or after the first contingency (N-1) the system requires additional readjustment in order to prepare for the next worst contingency. In this time frame, load drop is not allowed per existing planning criteria.

Generally, Category C describes system performance that is expected following the loss of two or more system elements. This loss of two elements is generally expected to happen simultaneously, referred to as N-2. It should be noted that once the "next" element is lost after the first contingency, as discussed above under the Performance Criteria B, N-1-1 scenario, the event is effectively a Category C. As noted above, depending on system design and expected system impacts, the **planned and controlled** interruption of supply to customers (load shedding), the removal from service of certain generators and curtailment of exports may be utilized to maintain grid "security."

#### c. CAISO Statutory Obligation Regarding Safe Operation

The CAISO will maintain the system in a safe operating mode at all times. This obligation translates into respecting the Reliability Criteria at all times, for example during normal operating conditions **A** (**N-0**) the CAISO must protect for all single contingencies **B** (**N-1**) and common mode **C5** (**N-2**) double line outages. As a further example, after a single contingency the CAISO must readjust the system in order to be able to support the loss of the next most stringent contingency **C3** (**N-1-1**).

<sup>&</sup>lt;sup>2</sup> A Special Protection Scheme is typically proposed as an operational solution that does not require additional generation and permits operators to effectively prepare for the next event as well as ensure security should the next event occur. However, these systems have their own risks, which limit the extent to which they could be deployed as a solution for grid reliability augmentation. While they provide the value of protecting against the next event without the need for pre-contingency load shedding, they add points of potential failure to the transmission network. This increases the potential for load interruptions because sometimes these systems will operate when not required and other times they will not operate when needed.



The following definitions guide the CAISO's interpretation of the Reliability Criteria governing safe mode operation and are used in this LCT Study:

#### Applicable Rating:

This represents the equipment rating that will be used under certain contingency conditions.

Normal rating is to be used under normal conditions.

<u>Long-term emergency ratings</u>, if available, will be used in all emergency conditions as long as "system readjustment" is provided in the amount of time given (specific to each element) to reduce the flow to within the normal ratings. If not available normal rating is to be used.

<u>Short-term emergency ratings</u>, if available, can be used as long as "system readjustment" is provided in the "short-time" available in order to reduce the flow to within the long-term emergency ratings where the element can be kept for another

length of time (specific to each element) before the flow needs to be reduced the below the normal ratings. If not available long-term emergency rating should be used.

<u>Temperature-adjusted ratings</u> shall not be used because this is a year-ahead study not a real-time tool, as such the worst-case scenario must be covered. In case temperatureadjusted ratings are the only ratings available then the minimum rating (highest temperature) given the study conditions shall be used.

<u>CAISO Transmission Register</u> is the only official keeper of all existing ratings mentioned above.

<u>Ratings for future projects</u> provided by PTO and agree upon by the CAISO shall be used.

<u>Other short-term ratings</u> not included in the CAISO Transmission Register may be used as long as they are engineered, studied and enforced through clear operating procedures that can be followed by real-time operators.

<u>Path Ratings</u> need to be maintained in order for these studies to comply with the Minimum Operating Reliability Criteria and assure that proper capacity is available in order to operate the system in real-time.

#### Controlled load drop:

This is achieved with the use of a Special Protection Scheme.

#### Planned load drop:

This is achieved when the most limiting equipment has short-term emergency ratings AND the operators have an operating procedure that clearly describes the actions that need to be taken in order to shed load.

#### **Special Protection Scheme:**

All known SPS shall be assumed. New SPS must be verified and approved by the CAISO and must comply with the new SPS guideline described in the CAISO Planning Standards.

#### System Readjustment:

This represents the actions taken by operators in order to bring the system within a safe operating zone after any given contingency in the system.

### <u>Actions that can be taken as system readjustment after a single contingency (Category</u> <u>B):</u>

- System configuration change based on validated and approved operating procedures
- 2. Generation re-dispatch
  - a. Decrease generation (up to 1150 MW) limit given by single contingency SPS as part of the CAISO Grid Planning standards (ISO G4)
  - b. Increase generation this generation will become part of the LCR need

### <u>Actions, which shall not be taken as system readjustment after a single contingency</u> (Category B):

 Load drop – based on the intent of the CAISO/WECC and NERC criteria for category B contingencies.

This is one of the most controversial aspects of the interpretation of the existing NERC criteria because the NERC Planning Standards footnote mentions that load shedding can be done after a category B event in certain local areas in order to maintain compliance with performance criteria. However, the main body of the criteria spells out that no dropping of load should be done following a single contingency. All stakeholders and the CAISO agree that no involuntary interruption of load should be done immediately after a single contingency. Further, the CAISO and stakeholders now agree on the viability of dropping load as part of the system readjustment period – in order to protect for the next most limiting contingency. After a single contingency, it is understood that the system is in a Category B condition and the system should be planned based on the body of the criteria with no shedding of load regardless of whether it is done immediately or in 15-30 minute after the original contingency. Category C conditions only arrive after the second contingency has happened; at that point in time, shedding load is allowed in a planned and controlled manner.

A robust California transmission system should be, and under the LCT Study is being, planned based on the main body of the criteria, not the footnote regarding Category B contingencies. Therefore, if there are available resources in the area, they are looked to meet reliability needs (and included in the LCR requirement) before resorting to involuntary load curtailment. The footnote may be applied for criteria compliance issues only where there are no resources available in the area.

#### Time allowed for manual readjustment:

This is the amount of time required for the operator to take all actions necessary to prepare the system for the next contingency. This time should be less than 30 minutes, based on existing CAISO Planning Standards.

This is a somewhat controversial aspect of the interpretation of existing criteria. This item is very specific in the CAISO Planning Standards. However, some will argue that 30 minutes only allows generation re-dispatch and automated switching where remote control is possible. If remote capability does not exist, a person must be dispatched in the field to do switching and 30 minutes may not allow sufficient time. If approved, an exemption from the existing time requirements may be given for small local areas with very limited exposure and impact, clearly described in operating procedures, and only until remote controlled switching equipment can be installed.

#### F. The Two Options Presented In This LCT Report

This LCT Study sets forth different solution "options" with varying ranges of potential service reliability consistent with CAISO's Reliability Criteria. The CAISO applies Option 2 for its purposes of identifying necessary local capacity needs and the corresponding potential scope of its backstop authority. Nevertheless, the CAISO continues to provide Option 1 as a point of reference for the CPUC and Local Regulatory Authorities in considering procurement targets for their jurisdictional LSEs.

14

### 1. Option 1- Meet Performance Criteria Category B

Option 1 is a service reliability level that reflects generation capacity that must be available to comply with reliability standards immediately after a NERC Category B given that load cannot be removed to meet this performance standard under Reliability Criteria. However, this capacity amount implicitly relies on load interruption as the **only means** of meeting any Reliability Criteria that is beyond the loss of a single transmission element (N-1). These situations will likely require substantial load interruptions in order to maintain system continuity and alleviate equipment overloads prior to the actual occurrence of the second contingency.<sup>3</sup>

# 2. Option 2- Meet Performance Criteria Category C and Incorporate Suitable Operational Solutions

Option 2 is a service reliability level that reflects generation capacity that is needed to readjust the system to prepare for the loss of a second transmission element (N-1-1) using generation capacity *after* considering all reasonable and feasible operating solutions (including those involving customer load interruption) developed and approved by the CAISO, in consultation with the PTOs. Under this option, there is no expected load interruption to end-use customers under normal or single contingency conditions as the CAISO operators prepare for the second contingency. However, the customer load may be interrupted in the event the second contingency occurs.

As noted, Option 2 is the local capacity level that the CAISO requires to reliably operate the grid per NERC, WECC and CAISO standards. As such, the CAISO recommends adoption of this Option to guide resource adequacy procurement.

#### III. Assumption Details: How the Study was Conducted

#### A. System Planning Criteria

<sup>&</sup>lt;sup>3</sup> This potential for pre-contingency load shedding also occurs because real time operators must prepare for the loss of a common mode N-2 at all times.

The following table provides a comparison of system planning criteria, based on the NERC performance standards, used in the study:

#### Table 1: Criteria Comparison

| Contingency Component(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ISO Grid<br>Planning<br>Criteria                                                            | Old RMR<br>Criteria                | Local<br>Capacity<br>Criteria |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|
| <u>A – No Contingencies</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x                                                                                           | x                                  | x                             |
| B - Loss of a single element1. Generator (G-1)2. Transmission Circuit (L-1)3. Transformer (T-1)4. Single Pole (dc) Line5. G-1 system readjusted L-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X<br>X<br>X<br>X<br>X                                                                       | X<br>X<br>X <sup>2</sup><br>X<br>X | X1<br>X1<br>X1,2<br>X1<br>X   |
| <ul> <li>C - Loss of two or more elements</li> <li>1. Bus Section</li> <li>2. Breaker (failure or internal fault)</li> <li>3. L-1 system readjusted G-1</li> <li>3. G-1 system readjusted T-1 or T-1 system readjusted G-1</li> <li>3. L-1 system readjusted L-1</li> <li>3. T-1 system readjusted T-1</li> <li>4. Bipolar (dc) Line</li> <li>5. Two circuits (Common Mode) L-2</li> <li>6. SLG fault (stuck breaker or protection failure) for G-1</li> <li>7. SLG fault (stuck breaker or protection failure) for T-1</li> <li>9. SLG fault (stuck breaker or protection failure) for Bus section WECC-S3. Two generators (Common Mode) G-2</li> </ul> | X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X<br>X |                                    | X<br>X<br>X<br>X<br>X<br>X    |
| <u><b>D</b> – Extreme event – loss of two or more elements</u><br>Any B1-4 system readjusted (Common Mode) L-2<br>All other extreme combinations D1-14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X4<br>X4                                                                                    |                                    | χ3                            |

the next contingency.

<sup>2</sup> A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.

<sup>3</sup> Evaluate for risks and consequence, per NERC standards. No voltage collapse or dynamic instability allowed.

<sup>4</sup> Evaluate for risks and consequence, per NERC standards.

A significant number of simulations were run to determine the most critical contingencies within each Local Capacity Area. Using power flow, post-transient load flow, and stability assessment tools, the system performance results of all the contingencies that were studied were measured against the system performance requirements defined by the criteria shown in Table 4. Where the specific system performance requirements were not met, generation was adjusted such that the minimum amount of generation required to meet the criteria was determined in the Local Capacity Area. The following describes how the criteria were tested for the specific type of analysis performed.

#### 1. **Power Flow Assessment:**

| <u>Contingencies</u>                                    | <u>Thermal Criteria</u> <sup>3</sup> | Voltage Criteria <sup>4</sup>       |
|---------------------------------------------------------|--------------------------------------|-------------------------------------|
| Generating unit <sup>1, 6</sup>                         | Applicable Rating                    | Applicable Rating                   |
| Transmission line <sup>1, 6</sup>                       | Applicable Rating                    | Applicable Rating                   |
| Transformer <sup>1, 6</sup>                             | Applicable Rating <sup>5</sup>       | Applicable Rating <sup>5</sup>      |
| (G-1)(I -1) <sup>2, 6</sup>                             | Applicable Rating                    | Applicable Rating                   |
| (G-1)(L-1) <sup>2,6</sup><br>Overlapping <sup>6,7</sup> | Applicable Rating Applicable Rating  | Applicable Rating Applicable Rating |

- <sup>1</sup> All single contingency outages (i.e. generating unit, transmission line or transformer) will be simulated on Participating Transmission Owners' local area systems.
- <sup>2</sup> Key generating unit out, system readjusted, followed by a line outage. This overlapping outage is considered a single contingency within the ISO Grid Planning Criteria. Therefore, load dropping for an overlapping G-1, L-1 scenario is not permitted.
- <sup>3</sup> Applicable Rating Based on CAISO Transmission Register or facility upgrade plans including established Path ratings.
- <sup>4</sup> Applicable Rating CAISO Grid Planning Criteria or facility owner criteria as appropriate including established Path ratings.
- <sup>5</sup> A thermal or voltage criterion violation resulting from a transformer outage may not be cause for a local area reliability requirement if the violation is considered marginal (e.g. acceptable loss of facility life or low voltage), otherwise, such a violation will necessitate creation of a requirement.
- <sup>6</sup> Following the first contingency (N-1), the generation must be sufficient to allow the operators to bring the system back to within acceptable (normal) operating range (voltage and loading) and/or appropriate OTC following the studied outage conditions.
- <sup>7</sup> During normal operation or following the first contingency (N-1), the generation must be sufficient to allow the operators to prepare for the next worst N-1 or common mode N-2 without pre-contingency interruptible or firm load shedding.

SPS/RAS/Safety Nets may be utilized to satisfy the criteria after the second N-1 or common mode N-2 except if the problem is of a thermal nature such that short-term ratings could be utilized to provide the operators time to shed either interruptible or firm load. T-2s (two transformer bank outages) would be excluded from the criteria.

#### 2. Post Transient Load Flow Assessment:

| <u>Contingencies</u>  | Reactive Margin Criteria <sup>2</sup> |
|-----------------------|---------------------------------------|
| Selected <sup>1</sup> | Applicable Rating                     |

- <sup>1</sup> If power flow results indicate significant low voltages for a given power flow contingency, simulate that outage using the post transient load flow program. The post-transient assessment will develop appropriate Q/V and/or P/V curves.
- <sup>2</sup> Applicable Rating positive margin based on the higher of imports or load increase by 5% for N-1 contingencies, and 2.5% for N-2 contingencies.

### 3. Stability Assessment:

| Contingencies         |  |
|-----------------------|--|
| Selected <sup>1</sup> |  |

Stability Criteria<sup>2</sup> Applicable Rating

- <sup>1</sup> Base on historical information, engineering judgment and/or if power flow or post transient study results indicate significant low voltages or marginal reactive margin for a given contingency.
- <sup>2</sup> Applicable Rating CAISO Grid Planning Criteria or facility owner criteria as appropriate.

#### B. Load Forecast

#### 1. System Forecast

The California Energy Commission (CEC) derives the load forecast at the system and Participating Transmission Owner (PTO) levels. This relevant CEC forecast is then distributed across the entire system, down to the local area, division and substation level. The PTOs use an econometric equation to forecast the system load. The predominant parameters affecting the system load are (1) number of households, (2) economic activity (gross metropolitan products, GMP), (3) temperature and (4) increased energy efficiency and distributed generation programs.

#### 2. Base Case Load Development Method

The method used to develop the base case loads is a melding process that extracts, adjusts and modifies the information from the system, distribution and municipal utility forecasts. The melding process consists of two parts: Part 1 deals with the PTO load and Part 2 deals with the municipal utility load. There may be small differences between the methodologies used by each PTO to disaggregate the CEC load forecast to their level of local area as well as bar-bus model.

#### a. PTO Loads in Base Case

The methods used to determine the PTO loads are, for the most part, similar. One part of the method deals with the determination of the division<sup>4</sup> loads that would meet the requirements of 1-in-5 or 1-in-10 system or area base cases and the other part deals with the allocation of the division load to the transmission buses.

#### i. Determination of division loads

The annual division load is determined by summing the previous year division load and the current division load growth. Thus, the key steps are the determination of the initial year division load and the annual load growth. The initial year for the base case development method is based heavily on recorded data. The division load growth in the system base case is determined in two steps. First, the total PTO load growth for the year is determined, as the product of the PTO load and the load growth rate from the system load forecast. Then this total PTO load growth is allocated to the division, based on the relative magnitude of the load growth projected for the divisions by the distribution planners. For example, for the 1-in-10 area base case, the division load growth determined for the system base case is adjusted to the 1-in-10 temperature using the load temperature relation determined from the latest peak load and temperature data of the division.

<sup>&</sup>lt;sup>4</sup> Each PTO divides its territory in a number of smaller area named divisions. These are usually smaller and compact areas that have the same temperature profile.

#### ii. Allocation of division load to transmission bus level

Since the base case loads are modeled at the various transmission buses, the division loads developed must be allocated to those buses. The allocation process is different depending on the load types. For the most part, each PTO classifies its loads into four types: conforming, non-conforming, self-generation and generation-plant loads. Since the non-conforming and self-generation loads are assumed to not vary with temperature, their magnitude would be the same in the system or area base cases of the same year. The remaining load (the total division load developed above, less the quantity of non-conforming and self-generation load) is the conforming load. The remaining load is allocated to the transmission buses based on the relative magnitude of the distribution forecast. The summation of all base case loads is generally higher than the load forecast because some load, i.e., self-generation and generation-plant, are behind the meter and must be modeled in the base cases. However, for the most part, metered or aggregated data with telemetry is used to come up with the load forecast.

#### b. Municipal Loads in Base Case

The municipal utility forecasts that have been provided to the CEC and PTOs for the purposes of their base cases were also used for this study.

#### C. Power Flow Program Used in the LCR analysis

The technical studies were conducted using General Electric's Power System Load Flow (GE PSLF) program version 18.0. This GE PSLF program is available directly from GE or through the Western System Electricity Council (WECC) to any member.

To evaluate Local Capacity Areas, the starting base case was adjusted to reflect the latest generation and transmission projects as well as the one-in-ten-year peak load forecast for each Local Capacity Area as provided to the CAISO by the PTOs.

Electronic contingency files provided by the PTOs were utilized to perform the numerous contingencies required to identify the LCR. These contingency files include remedial action and special protection schemes that are expected to be in operation

20

during the year of study. An CAISO created EPCL (a GE programming language contained within the GE PSLF package) routine was used to run the combination of contingencies; however, other routines are available from WECC with the GE PSFL package or can be developed by third parties to identify the most limiting combination of contingencies requiring the highest amount of generation within the local area to maintain power flows within applicable ratings.

#### IV. Locational Capacity Requirement Study Results

#### A. Summary of Study Results

LCR is defined as the amount of generating capacity that is needed within a Local Capacity Area to reliably serve the load located within this area. The results of the CAISO's analysis are summarized in the Executive Summary Tables.

|                       | 2014Total<br>LCR (MW) | Peak Load<br>(1 in10)<br>(MW) | 2014 LCR<br>as % of<br>Peak Load | Total Dependable<br>Local Area<br>Generation (MW) | 2014 LCR as %<br>of Total Area<br>Generation |
|-----------------------|-----------------------|-------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------|
| Humboldt              | 195                   | 195                           | 100%                             | 243                                               | 80%                                          |
| North Coast/North Bay | 623                   | 1465                          | 43%                              | 921                                               | 68%                                          |
| Sierra                | 2088                  | 1958                          | 107%                             | 2050                                              | 102%**                                       |
| Stockton              | 701                   | 1163                          | 60%                              | 604                                               | 116%**                                       |
| Greater Bay           | 4638                  | 10419                         | 45%                              | 7616                                              | 61%**                                        |
| Greater Fresno        | 1857                  | 3246                          | 57%                              | 2828                                              | 66%                                          |
| Kern                  | 465                   | 1281                          | 36%                              | 677                                               | 69%**                                        |
| LA Basin              | 10430                 | 19694                         | 53%                              | 11789                                             | 88%                                          |
| Big Creek/Ventura     | 2250                  | 4580                          | 49%                              | 5318                                              | 42%                                          |
| San Diego             | 4063                  | 5200                          | 78%                              | 4706                                              | 86%**                                        |
| Total                 | 27310                 | 49201*                        | 56%*                             | 36752                                             | 74%                                          |

Table 2: 2014 Local Capacity Needs vs. Peak Load and Local Area Generation

|                                      | 2018<br>Total LCR<br>(MW) | Peak Load<br>(1 in10)<br>(MW) | 2018 LCR<br>as % of<br>Peak Load | Total Dependable<br>Local Area<br>Generation (MW) | 2018 LCR as %<br>of Total Area<br>Generation |
|--------------------------------------|---------------------------|-------------------------------|----------------------------------|---------------------------------------------------|----------------------------------------------|
| Humboldt                             | 197                       | 208                           | 95%                              | 243                                               | 81%                                          |
| North Coast/North Bay                | 424                       | 1561                          | 27%                              | 921                                               | 46%                                          |
| Sierra                               | 1153                      | 2176                          | 53%                              | 2050                                              | 56%**                                        |
| Stockton                             | 418                       | 1224                          | 34%                              | 604                                               | 69%**                                        |
| Greater Bay                          | 4486                      | 10936                         | 41%                              | 8358                                              | 54%**                                        |
| Greater Fresno                       | 2110                      | 3401                          | 62%                              | 2828                                              | 75%                                          |
| Kern                                 | 447                       | 1324                          | 34%                              | 677                                               | 66%**                                        |
| LA Basin                             | 11071                     | 20705                         | 53%                              | 14035                                             | 79%                                          |
| Big Creek/Ventura                    | 2668                      | 5207                          | 51%                              | 5318                                              | 50%                                          |
| Greater San<br>Diego/Imperial Valley | 3340                      | 5663                          | 59%                              | 6176                                              | 54%**                                        |
| Total                                | 26314                     | 52405*                        | 50%*                             | 41210                                             | 64%                                          |

Table 3: 2018 Local Capacity Needs vs. Peak Load and Local Area Generation

\* Value shown only illustrative, since each local area peaks at a different time.

\*\* Generation deficient LCA (or with sub-area that are deficient) – deficiency included in LCR. Generator deficient area implies that in order to comply with the criteria, at summer peak, load must be shed immediately after the first contingency.

Tables 2 and 3 shows how much of the Local Capacity Area load is dependent on local generation and how much local generation must be available in order to serve the load in those Local Capacity Areas in a manner consistent with the Reliability Criteria. These tables also indicate where new transmission projects, new generation additions or demand side management programs would be most useful in order to reduce the dependency on existing, generally older and less efficient local area generation.

The term "Qualifying Capacity" used in this report is the "Net Qualifying Capacity" ("NQC") posted on the CAISO web site at:

#### http://www.caiso.com/1796/179688b22c970.html

The NQC list includes the area (if applicable) where each resource is located for units already operational. Neither the NQC list nor this report incorporates Demand Side Management programs and their related NQC. Units scheduled to become operational before June 1 of 2018 have been included in this 2018 Long-Term LCR Report and added to the total NQC values for those respective areas (see detail writeup for each area).

Regarding the main tables up front (page 2), the first column, "Qualifying Capacity," reflects two sets of generation. The first set is comprised of generation that would normally be expected to be on-line such as Municipal generation and Regulatory Must-take generation (state, federal, QFs, wind and nuclear units). The second set is "market" generation. The second column, "YEAR LCR Requirement Based on Category B" identifies the local capacity requirements, and deficiencies that must be addressed, in order to achieve a service reliability level based on Performance Criteria- Category B. The third column, "YEAR LCR Requirement Based on Category C with Operating Procedure", sets forth the local capacity requirements, and deficiencies that must be addressed, necessary to attain a service reliability level based on Performance Criteria-Category C with operational solutions.

#### B. Summary of Results by Local Area

Each Local Capacity Area's overall requirement is determined by also achieving each sub-area requirement. Because these areas are a part of the interconnected electric system, the total for each Local Capacity Area is not simply a summation of the sub-area needs. For example, some sub-areas may overlap and therefore the same units may count for meeting the needs in both sub-areas.

#### 1. Humboldt Area

#### Area Definition

The transmission tie lines into the area include:

- 1) Bridgeville-Cottonwood 115 kV line #1
- 2) Humboldt-Trinity 115 kV line #1

- 3) Willits-Garberville 60 kV line #1
- 4) Trinity-Maple Creek 60 kV line #1

The substations that delineate the Humboldt Area are:

- 1) Bridgeville and Low Gap are in, Cottonwood is out
- 2) Humboldt is in Trinity is out
- 3) Willits is out, Kekawaka and Garberville are in
- 4) Trinity is out, Ridge Cabin and Maple Creek are in

Total 2018 busload within the defined area: 198 MW with 10 MW of losses resulting in total load + losses of 208 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC   | UNIT<br>ID | LCR SUB-AREA<br>NAME | NQC Comments           | CAISO Tag  |
|--------------------------|-------|----------|------|-------|------------|----------------------|------------------------|------------|
| BLULKE_6_BLUELK          | 31156 | BLUELKPP | 12.5 | 12.00 | 1          | Humboldt 60 kV       |                        | Market     |
| BRDGVL_7_BAKER           |       |          |      | 0.00  |            | None                 | Not modeled Aug<br>NQC | QF/Selfgen |
| FAIRHV_6_UNIT            | 31150 | FAIRHAVN | 13.8 | 15.29 | 1          | Humboldt 60 kV       | Aug NQC                | QF/Selfgen |
| FTSWRD_7_QFUNTS          |       |          |      | 0.62  |            | Humboldt 60 kV       | Not modeled Aug<br>NQC | QF/Selfgen |
| GRSCRK_6_BGCKW<br>W      |       |          |      | 0.00  |            | Humboldt 60 kV       | Energy Only            | QF/Selfgen |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.27 | 1          | None                 |                        | Market     |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.27 | 2          | None                 |                        | Market     |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.27 | 3          | None                 |                        | Market     |
| HUMBPP_1_UNITS3          | 31180 | HUMB_G1  | 13.8 | 16.27 | 4          | None                 |                        | Market     |
| HUMBPP_6_UNITS1          | 31181 | HUMB_G2  | 13.8 | 16.27 | 5          | Humboldt 60 kV       |                        | Market     |
| HUMBPP_6_UNITS1          | 31181 | HUMB_G2  | 13.8 | 16.27 | 6          | Humboldt 60 kV       |                        | Market     |
| HUMBPP_6_UNITS1          | 31181 | HUMB_G2  | 13.8 | 16.27 | 7          | Humboldt 60 kV       |                        | Market     |
| HUMBPP_6_UNITS2          | 31182 | HUMB_G2  | 13.8 | 16.27 | 8          | Humboldt 60 kV       |                        | Market     |
| HUMBPP_6_UNITS2          | 31182 | HUMB_G2  | 13.8 | 16.27 | 9          | Humboldt 60 kV       |                        | Market     |
| HUMBPP_6_UNITS2          | 31182 | HUMB_G2  | 13.8 | 16.27 | 10         | Humboldt 60 kV       |                        | Market     |
| HUMBSB_1_QF              |       |          |      | 0.00  |            | None                 | Not modeled Aug<br>NQC | QF/Selfgen |
| KEKAWK_6_UNIT            | 31166 | KEKAWAK  | 9.1  | 0.00  | 1          | Humboldt 60 kV       | Aug NQC                | QF/Selfgen |
| LAPAC_6_UNIT             | 31158 | LP SAMOA | 12.5 | 20.00 | 1          | Humboldt 60 kV       |                        | QF/Selfgen |
| PACLUM_6_UNIT            | 31152 | PAC.LUMB | 13.8 | 7.51  | 1          | Humboldt 60 kV       | Aug NQC                | QF/Selfgen |
| PACLUM_6_UNIT            | 31152 | PAC.LUMB | 13.8 | 7.52  | 2          | Humboldt 60 kV       | Aug NQC                | QF/Selfgen |
| PACLUM_6_UNIT            | 31153 | PAC.LUMB | 2.4  | 4.52  | 3          | Humboldt 60 kV       | Aug NQC                | QF/Selfgen |
| WLLWCR_6_CEDRFL          |       |          |      | 0.02  |            | Humboldt 60 kV       | Not modeled Aug<br>NQC | QF/Selfgen |
| New Unit                 | 31161 | RPSP1016 | 34.5 | 8     | 1          | Humboldt 60 kV       | No NQC - est. data     | Wind       |
| New Unit                 | 31161 | RPSP1016 | 34.5 | 7     | 2          | Humboldt 60 kV       | No NQC - est. data     | Wind       |

Total units and qualifying capacity available in this area:

#### Major new projects modeled:

- 1. Humboldt 115/60 kV #1 and #2 transformers replacement
- 2. Maple Creek Reactive Support
- 3. Garberville Reactive Support
- 4. Bridgeville 115/60 kV #1 transformer replacement
- 5. Two new small wind resources

#### Critical Contingency Analysis Summary

#### Humboldt 60 kV Sub-area:

This sub-area has been eliminated due to the new transmission projects.

#### Humboldt Overall:

The most critical contingency for the Humboldt area is the outage of the Cottonwood-Bridgeville 115 kV line overlapping with an outage of the gen-tie from Humboldt Bay Power Plant to units 1-4. The local area limitation is potential overload on the Humboldt -Trinity 115 kV Line. This contingency establishes a local capacity need of 197 MW in 2018 (includes 55 MW of QF/Selfgen and 15 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency for the Humboldt area is the outage of the Cottonwood-Bridgeville 115 kV line with one of the Humboldt Bay Power Plant units already out of service, which could potentially overload the Humboldt -Trinity 115 kV line. This contingency establishes a local capacity need of 149 MW in 2018 (includes 55 MW of QF/Selfgen and 15 MW of wind generation).

#### **Effectiveness factors:**

The following table has units at least 5% effective to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31156   | BLUELKPP | 1      | 65           |
| 31180   | HUMB_G1  | 4      | 64           |
| 31180   | HUMB_G1  | 3      | 64           |
| 31180   | HUMB_G1  | 2      | 64           |
| 31180   | HUMB_G1  | 1      | 64           |

| 31150 | FAIRHAVN | 1  | 61 |
|-------|----------|----|----|
| 31158 | LP SAMOA | 1  | 61 |
| 31182 | HUMB_G3  | 10 | 61 |
| 31182 | HUMB_G3  | 9  | 61 |
| 31182 | HUMB_G3  | 8  | 61 |
| 31181 | HUMB_G2  | 7  | 61 |
| 31181 | HUMB_G2  | 6  | 61 |
| 31181 | HUMB_G2  | 5  | 61 |
| 31152 | PAC.LUMB | 1  | 57 |
| 31152 | PAC.LUMB | 2  | 57 |
| 31153 | PAC.LUMB | 3  | 57 |
| 31161 | RPSP1016 | 1  | 57 |
| 31161 | RPSP1016 | 2  | 57 |
|       |          |    |    |

#### Changes compared to last year's results:

The load and losses have increased by 2 MW from 2017 to 2018. The total LCR in 2018 aligns with all other years except for 2017. Compared with 2017 there is an increased of 32 MW however this increase was caused by the 2017 studies that showed a drop of 33 MW vs. 2016. The ISO is investigating the cause for the 2017 misalignment.

#### Humboldt Overall Requirements:

|                      | QF/Selfgen | Wind | Market | Max. Qualifying |
|----------------------|------------|------|--------|-----------------|
|                      | (MW)       | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 55         | 15   | 173    | 243             |

| 2018                               | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|------------------------------------|---------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>5</sup>   | 149                                         | 0                  | 149                     |
| Category C (Multiple) <sup>6</sup> | 197                                         | 0                  | 197                     |

<sup>&</sup>lt;sup>5</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within

a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>6</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

#### 2. North Coast / North Bay Area

#### Area Definition

The transmission tie facilities coming into the North Coast/North Bay area are:

- Cortina-Mendocino 115 kV Line 1)
- 2) Cortina-Eagle Rock 115 kV Line
- Willits-Garberville 60 kV line #1 3)
- Vaca Dixon-Lakeville 230 kV line #1 4)
- Tulucav-Vaca Dixon 230 kV line #1 5)
- Lakeville-Sobrante 230 kV line #1 6)
- Ignacio-Sobrante 230 kV line #1 7)

The substations that delineate the North Coast/North Bay area are:

- 1) Cortina is out, Mendocino and Indian Valley are in
- Cortina is out, Eagle Rock, Highlands and Homestake are in 2)
- Willits and Lytonville are in, Kekawaka and Garberville are out 3)
- Vaca Dixon is out, Lakeville is in 4)
- Tulucay is in, Vaca Dixon is out 5)
- Lakeville is in, Sobrante is out 6)
- 7) Ignacio is in, Sobrante and Crocket are out

Total 2018 busload within the defined area: 1520 MW with 41 MW of losses resulting in total load + losses of 1561 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC   | UNIT<br>ID | LCR SUB-AREA NAME                | NQC<br>Comments        | CAISO Tag  |
|--------------------------|-------|----------|------|-------|------------|----------------------------------|------------------------|------------|
| ADLIN_1_UNITS            | 31435 | GEO.ENGY | 9.1  | 8.00  | 1          | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| ADLIN_1_UNITS            | 31435 | GEO.ENGY | 9.1  | 8.00  | 2          | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| BEARCN_2_UNITS           | 31402 | BEAR CAN | 13.8 | 6.50  | 1          | Fulton, Lakeville                |                        | Market     |
| BEARCN_2_UNITS           | 31402 | BEAR CAN | 13.8 | 6.50  | 2          | Fulton, Lakeville                |                        | Market     |
| FULTON_1_QF              |       |          |      | 0.09  |            | Fulton, Lakeville                | Not modeled<br>Aug NQC | QF/Selfgen |
| GEYS11_7_UNIT11          | 31412 | GEYSER11 | 13.8 | 65.00 | 1          | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GEYS12_7_UNIT12          | 31414 | GEYSER12 | 13.8 | 50.00 | 1          | Fulton, Lakeville                |                        | Market     |
| GEYS13_7_UNIT13          | 31416 | GEYSER13 | 13.8 | 56.00 | 1          | Lakeville                        |                        | Market     |
| GEYS14_7_UNIT14          | 31418 | GEYSER14 | 13.8 | 50.00 | 1          | Fulton, Lakeville                |                        | Market     |
| GEYS16_7_UNIT16          | 31420 | GEYSER16 | 13.8 | 49.00 | 1          | Fulton, Lakeville                |                        | Market     |
| GEYS17_2_BOTRCK          | 31421 | BOTTLERK | 13.8 | 14.70 | 1          | Fulton, Lakeville                |                        | Market     |
| GEYS17_7_UNIT17          | 31422 | GEYSER17 | 13.8 | 53.00 | 1          | Fulton, Lakeville                |                        | Market     |
| GEYS18_7_UNIT18          | 31424 | GEYSER18 | 13.8 | 45.00 | 1          | Lakeville                        |                        | Market     |

Total units and qualifying capacity available in this area:

| GEYS20_7_UNIT20 | 31426 | GEYSER20 | 13.8 | 40.00 | 1 | Lakeville                        |                        | Market     |
|-----------------|-------|----------|------|-------|---|----------------------------------|------------------------|------------|
| GYS5X6_7_UNITS  | 31406 | GEYSR5-6 | 13.8 | 40.00 | 1 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYS5X6_7_UNITS  | 31406 | GEYSR5-6 | 13.8 | 40.00 | 2 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYS7X8_7_UNITS  | 31408 | GEYSER78 | 13.8 | 38.00 | 1 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYS7X8_7_UNITS  | 31408 | GEYSER78 | 13.8 | 38.00 | 2 | Eagle Rock, Fulton,<br>Lakeville |                        | Market     |
| GYSRVL_7_WSPRNG |       |          |      | 1.68  |   | Fulton, Lakeville                | Not modeled<br>Aug NQC | QF/Selfgen |
| HILAND_7_YOLOWD |       |          |      | 0.00  |   | Eagle Rock, Fulton,<br>Lakeville | Energy Only            | Market     |
| HIWAY_7_ACANYN  |       |          |      | 0.71  |   | Lakeville                        | Not modeled<br>Aug NQC | QF/Selfgen |
| IGNACO_1_QF     |       |          |      | 0.00  |   | Lakeville                        | Not modeled<br>Aug NQC | QF/Selfgen |
| INDVLY_1_UNITS  | 31436 | INDIAN V | 9.1  | 0.74  | 1 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | QF/Selfgen |
| MONTPH_7_UNITS  | 32700 | MONTICLO | 9.1  | 3.89  | 1 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| MONTPH_7_UNITS  | 32700 | MONTICLO | 9.1  | 3.89  | 2 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| MONTPH_7_UNITS  | 32700 | MONTICLO | 9.1  | 0.92  | 3 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| NAPA_2_UNIT     |       |          |      | 0.00  |   | Lakeville                        | Not modeled<br>Aug NQC | QF/Selfgen |
| NCPA_7_GP1UN1   | 38106 | NCPA1GY1 | 13.8 | 31.00 | 1 | Lakeville                        | Aug NQC                | MUNI       |
| NCPA_7_GP1UN2   | 38108 | NCPA1GY2 | 13.8 | 28.00 | 1 | Lakeville                        | Aug NQC                | MUNI       |
| NCPA_7_GP2UN3   | 38110 | NCPA2GY1 | 13.8 | 8.53  | 1 | Fulton, Lakeville                | Aug NQC                | MUNI       |
| NCPA_7_GP2UN4   | 38112 | NCPA2GY2 | 13.8 | 52.70 | 1 | Fulton, Lakeville                | Aug NQC                | MUNI       |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 4.70  | 1 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | Market     |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 2.25  | 3 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | Market     |
| POTTER_6_UNITS  | 31433 | POTTRVLY | 2.4  | 2.25  | 4 | Eagle Rock, Fulton,<br>Lakeville | Aug NQC                | Market     |
| POTTER_7_VECINO |       |          |      | 0.02  |   | Eagle Rock, Fulton,<br>Lakeville | Not modeled<br>Aug NQC | QF/Selfgen |
| SANTFG_7_UNITS  | 31400 | SANTA FE | 13.8 | 30.00 | 1 | Lakeville                        |                        | Market     |
| SANTFG_7_UNITS  |       | SANTA FE |      | 30.00 | 2 | Lakeville                        |                        | Market     |
| SMUDGO_7_UNIT 1 |       | SMUDGEO1 | 13.8 | 37.00 | 1 | Lakeville                        |                        | Market     |
| SNMALF_6_UNITS  | 31446 | SONMA LF | 9.1  | 4.40  | 1 | Fulton, Lakeville                | Aug NQC                | QF/Selfgen |
| UKIAH_7_LAKEMN  |       |          |      | 1.70  |   | Eagle Rock, Fulton,<br>Lakeville | Not modeled            | MUNI       |
| WDFRDF_2_UNITS  | 31404 | WEST FOR | 13.8 | 12.51 | 1 | Fulton, Lakeville                |                        | Market     |
| WDFRDF_2_UNITS  | 31404 | WEST FOR | 13.8 | 12.49 | 2 | Fulton, Lakeville                |                        | Market     |
| New Unit        | 31405 | RPSP1014 | 13.8 | 32    | 1 | Eagle Rock, Fulton,<br>Lakeville | No NQC - Pmax          | Market     |
| New Unit        | 31439 | RPSP1015 | 13.8 | 12    | 1 | Eagle Rock, Fulton,<br>Lakeville | No NQC - est.<br>data  | Wind       |
| New Unit        | 31447 | RPSP1008 | 4.2  | 0     | 1 | Lakeville                        | Energy Only            | Market     |

Major new projects modeled:

- 1. Fulton 230/115 kV transformer
- 2. Fulton-Fitch Mountain 60 kV Line reconductoring
- 3. Clear Lake 60 kV System Reinforcement Project (Middle Town 115 kV Project)
- 4. Vaca Dixon-Lakeville 230 kV Reconductoring
- 5. Three new small renewable resources

#### Critical Contingency Analysis Summary

#### Eagle Rock Sub-area

The most critical overlapping contingency is an outage of the Geysers #3 - Geyser #5 115 kV line and the Cortina-Mendocino 115 kV line. The sub-area area limitation is thermal overloading of the Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a local capacity need of 233 MW in 2018 (includes 2 MW of QF/MUNI and 12 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is an outage of the Cortina-Mendocino 115 kV transmission line with Geysers 11 unit out of service. The sub-area limitation is thermal overloading of the parallel Eagle Rock-Cortina 115 kV line. This limiting contingency establishes a local capacity need of 218 MW in 2018 (includes 2 MW of QF/Muni and 12 MW of wind generation).

#### **Effectiveness factors:**

The following units have at least 5% effective to the above-mentioned constraint:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31406   | GEYSR5-6 | 1      | 36           |
| 31406   | GEYSR5-6 | 2      | 36           |
| 31405   | RPSP1014 | 1      | 36           |
| 31408   | GEYSER78 | 1      | 36           |
| 31408   | GEYSER78 | 2      | 36           |
| 31412   | GEYSER11 | 1      | 37           |
| 31435   | GEO.ENGY | 1      | 35           |
| 31435   | GEO.ENGY | 2      | 35           |
| 31439   | RPSP1015 | 1      | 34           |
| 31433   | POTTRVLY | 1      | 34           |

| 31433 | POTTRVLY | 3 | 34 |
|-------|----------|---|----|
| 31433 | POTTRVLY | 4 | 34 |

#### Fulton Sub-area

The most critical overlapping contingency is the outage of the Fulton-Ignacio 230 kV line #1 and the Fulton-Lakeville 230 kV line #1. The sub-area area limitation is thermal overloading of Santa Rosa - Corona 115 kV line #1. This limiting contingency establishes a local capacity need of 351 MW in 2018 (includes 16 MW of QF, 54 MW of Muni and 12 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this sub-area. All of the units required to meet the Eagle Rock pocket count towards the Fulton total requirement.

#### **Effectiveness factors:**

The following table has units within the Fulton pocket as well as units outside the pocket that are at least 5% effective to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 38112   | NCPA2GY2 | 1      | 57           |
| 38110   | NCPA2GY1 | 1      | 57           |
| 31422   | GEYSER17 | 1      | 57           |
| 31421   | BOTTLERK | 1      | 57           |
| 31420   | GEYSER16 | 1      | 57           |
| 31418   | GEYSER14 | 1      | 57           |
| 31414   | GEYSER12 | 1      | 57           |
| 31404   | WEST FOR | 2      | 57           |
| 31404   | WEST FOR | 1      | 57           |
| 31402   | BEAR CAN | 1      | 57           |
| 31402   | BEAR CAN | 2      | 57           |
| 31406   | GEYSR5-6 | 1      | 31           |
| 31406   | GEYSR5-6 | 2      | 31           |
| 31405   | RPSP1014 | 1      | 31           |
| 31408   | GEYSER78 | 1      | 31           |
| 31408   | GEYSER78 | 2      | 31           |
| 31412   | GEYSER11 | 1      | 31           |
| 31435   | GEO.ENGY | 1      | 31           |
| 31435   | GEO.ENGY | 2      | 31           |
| 31439   | RPSP1015 | 1      | 29           |
| 31433   | POTTRVLY | 1      | 29           |
| 31433   | POTTRVLY | 3      | 29           |
| 31433   | POTTRVLY | 4      | 29           |
|         |          |        |              |

#### Lakeville Sub-area

The most limiting contingency is the outage of Vaca Dixon-Lakeville 230 kV line with Geysers 11 unit out of service. The sub-area limitation is thermal overloading of the Vaca Dixon-Tulucay 230 kV line. This limiting contingency establishes a local capacity need of 424 MW (includes 16 MW of QF, 122 MW of Muni and 12 MW of wind generation) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area. The local capacity need for Eagle Rock and Fulton sub-areas can be counted toward fulfilling the need of Lakeville sub-area.

#### Effectiveness factors:

The following table has units at least 5% effective to the above-mentioned constraint.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 31400   | SANTA FE | 2      | 38           |
| 31430   | SMUDGEO1 | 1      | 38           |
| 31400   | SANTA FE | 1      | 38           |
| 31416   | GEYSER13 | 1      | 38           |
| 31424   | GEYSER18 | 1      | 38           |
| 31426   | GEYSER20 | 1      | 38           |
| 38106   | NCPA1GY1 | 1      | 38           |
| 38108   | NCPA1GY2 | 1      | 38           |
| 31421   | BOTTLERK | 1      | 36           |
| 31404   | WEST FOR | 2      | 36           |
| 31402   | BEAR CAN | 1      | 36           |
| 31402   | BEAR CAN | 2      | 36           |
| 31404   | WEST FOR | 1      | 36           |
| 31414   | GEYSER12 | 1      | 36           |
| 31418   | GEYSER14 | 1      | 36           |
| 31420   | GEYSER16 | 1      | 36           |
| 31422   | GEYSER17 | 1      | 36           |
| 38110   | NCPA2GY1 | 1      | 36           |
| 38112   | NCPA2GY2 | 1      | 36           |
| 31446   | SONMA LF | 1      | 36           |
| 32700   | MONTICLO | 1      | 31           |
| 32700   | MONTICLO | 2      | 31           |
| 32700   | MONTICLO | 3      | 31           |
| 31406   | GEYSR5-6 | 1      | 18           |
| 31406   | GEYSR5-6 | 2      | 18           |
| 31405   | RPSP1014 | 1      | 18           |
| 31408   | GEYSER78 | 1      | 18           |
| 31408   | GEYSER78 | 2      | 18           |
| 31412   | GEYSER11 | 1      | 18           |

| 31435 | GEO.ENGY | 1 | 18 |
|-------|----------|---|----|
| 31435 | GEO.ENGY | 2 | 18 |
| 31439 | RPSP1015 | 1 | 15 |
| 31433 | POTTRVLY | 1 | 15 |
| 31433 | POTTRVLY | 2 | 15 |
| 31433 | POTTRVLY | 3 | 15 |

#### Changes compared to last year's results:

Overall the load and losses forecast went up by 23 MW compared to 2017 and the overall LCR requirement went down by 22 MW, due mainly to different load distribution in North Coast/North Bay and slightly different dispatch in Bay Area generation.

#### North Coast/North Bay Overall Requirements:

|                      | QF/Selfgen | Wind | Muni | Market | Max. Qualifying |
|----------------------|------------|------|------|--------|-----------------|
|                      | (MW)       | (MW) | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 16         | 12   | 122  | 771    | 921             |

| 2018                               | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |  |
|------------------------------------|---------------------------------------------|--------------------|-------------------------|--|
| Category B (Single) <sup>7</sup>   | 424                                         | 0                  | 424                     |  |
| Category C (Multiple) <sup>8</sup> | 424                                         | 0                  | 424                     |  |

#### 3. Sierra Area

#### Area Definition

The transmission tie lines into the Sierra Area are:

- 1) Table Mountain-Rio Oso 230 kV line
- 2) Table Mountain-Palermo 230 kV line
- 3) Table Mt-Pease 60 kV line
- 4) Caribou-Palermo 115 kV line
- 5) Drum-Summit 115 kV line #1
- 6) Drum-Summit 115 kV line #2

<sup>&</sup>lt;sup>7</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>8</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 7) Spaulding-Summit 60 kV line
- 8) Brighton-Bellota 230 kV line
- 9) Rio Oso-Lockeford 230 kV line
- 10) Gold Hill-Eight Mile Road 230 kV line
- 11) Lodi-Eight Mile Road 230 kV line
- 12) Gold Hill-Lake 230 kV line
- 13) Vaca Dixon–Davis #1 115kV line
- 14) Vaca Dixon–Davis #2 115kV line

The substations that delineate the Sierra Area are:

- 1) Table Mountain is out Rio Oso is in
- 2) Table Mountain is out Palermo is in
- 3) Table Mt is out Pease is in
- 4) Caribou is out Palermo is in
- 5) Drum is in Summit is out
- 6) Drum is in Summit is out
- 7) Spaulding is in Summit is out
- 8) Brighton is in Bellota is out
- 9) Rio Oso is in Lockeford is out
- 10) Gold Hill is in Eight Mile is out
- 11) Lodi is in Eight Mile is out
- 12) Gold Hill is in Lake is out
- 13) Vaca Dixon is out Vaca Dixon Junction 1 is in
- 14) Vaca Dixon is out Vaca Dixon Junction 2 is in

Total 2018 busload within the defined area: 2069 MW with 107 MW of losses resulting

in total load + losses of 2176 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC    | UNIT<br>ID | LCR SUB-AREA NAME                                                                                  | NQC<br>Comments        | CAISO<br>Tag |
|--------------------------|-------|----------|------|--------|------------|----------------------------------------------------------------------------------------------------|------------------------|--------------|
| APLHIL_1_SLABCK          |       |          |      | 0.00   |            | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain                     | Not modeled<br>Aug NQC | Market       |
| BELDEN_7_UNIT 1          | 31784 | BELDEN   | 13.8 | 115.00 | 1          | South of Palermo, South of<br>Table Mountain                                                       | Aug NQC                | Market       |
| BIOMAS_1_UNIT 1          | 32156 | WOODLAND | 9.1  | 23.87  | 1          | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                      | Aug NQC                | QF/Selfgen   |
| BNNIEN_7_ALTAPH          | 32376 | BONNIE N | 60   | 0.71   |            | Weimer, Placer, Drum-Rio<br>Oso, South of Rio Oso,<br>South of Palermo, South of<br>Table Mountain | Not modeled<br>Aug NQC | Market       |
| BOGUE_1_UNITA1           | 32451 | FREC     | 13.8 | 45.00  | 1          | Bogue, Drum-Rio Oso,<br>South of Table Mountain                                                    | Aug NQC                | Market       |
| BOWMN_6_UNIT             | 32480 | BOWMAN   | 9.1  | 2.94   | 1          | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                      | Aug NQC                | MUNI         |
| BUCKCK_7_OAKFLT          |       |          |      | 1.12   |            | South of Palermo, South of                                                                         | Not modeled            | Market       |

Total units and qualifying capacity available in this area:

|                 | 1     |          |      |        |   | Table Mountain                                                                             | Aug NQC                |        |
|-----------------|-------|----------|------|--------|---|--------------------------------------------------------------------------------------------|------------------------|--------|
| BUCKCK_7_PL1X2  | 31820 | BCKS CRK | 11   | 29.00  | 1 | South of Palermo, South of<br>Table Mountain                                               | Aug NQC                | Market |
| BUCKCK_7_PL1X2  | 31820 | BCKS CRK | 11   | 29.00  | 2 | South of Palermo, South of<br>Table Mountain                                               | Aug NQC                | Market |
| CAMPFW_7_FARWST | 32470 | CMP.FARW | 9.1  | 4.04   | 1 | South of Table Mountain                                                                    | Aug NQC                | MUNI   |
| CHICPK_7_UNIT 1 | 32462 | CHI.PARK | 11.5 | 38.00  | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | MUNI   |
| COLGAT_7_UNIT 1 | 32450 | COLGATE1 | 13.8 | 161.65 | 1 | South of Table Mountain                                                                    | Aug NQC                | MUNI   |
| COLGAT_7_UNIT 2 | 32452 | COLGATE2 | 13.8 | 161.68 | 1 | South of Table Mountain                                                                    | Aug NQC                | MUNI   |
| CRESTA_7_PL1X2  | 31812 | CRESTA   | 11.5 | 35.00  | 1 | South of Palermo, South of<br>Table Mountain                                               | Aug NQC                | Market |
| CRESTA_7_PL1X2  | 31812 | CRESTA   | 11.5 | 35.00  | 2 | South of Palermo, South of<br>Table Mountain                                               | Aug NQC                | Market |
| DAVIS_7_MNMETH  |       |          |      | 2.10   |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Not modeled<br>Aug NQC | Market |
| DEADCK_1_UNIT   | 31862 | DEADWOOD | 9.1  | 0.00   | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                | MUNI   |
| DEERCR_6_UNIT 1 | 32474 | DEER CRK | 9.1  | 3.38   | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL1X2    | 32504 | DRUM 1-2 | 6.6  | 13.00  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL1X2    | 32504 | DRUM 1-2 | 6.6  | 13.00  | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL3X4    | 32506 | DRUM 3-4 | 6.6  | 13.70  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_PL3X4    | 32506 | DRUM 3-4 | 6.6  | 13.70  | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DRUM_7_UNIT 5   | 32454 | DRUM 5   | 13.8 | 49.50  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market |
| DUTCH1_7_UNIT 1 | 32464 | DTCHFLT1 | 11   | 22.00  | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | Market |
| DUTCH2_7_UNIT 1 | 32502 | DTCHFLT2 | 6.9  | 26.00  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | MUNI   |
| ELDORO_7_UNIT 1 | 32513 | ELDRADO1 | 21.6 | 11.00  | 1 | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             |                        | Market |
| ELDORO_7_UNIT 2 | 32514 | ELDRADO2 | 21.6 | 11.00  | 1 | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             |                        | Market |
| FMEADO_6_HELLHL | 32486 | HELLHOLE | 9.1  | 0.55   | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                | MUNI   |
| FMEADO_7_UNIT   |       | FRNCH MD | 4.2  | 16.01  | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          | Aug NQC                | MUNI   |
| FORBST_7_UNIT 1 | 31814 | FORBSTWN | 11.5 | 39.00  | 1 | Drum-Rio Oso, South of                                                                     | Aug NQC                | MUNI   |

|                                  |       |          |             |               |   | Table Mountain                                                                                            |                        |                |
|----------------------------------|-------|----------|-------------|---------------|---|-----------------------------------------------------------------------------------------------------------|------------------------|----------------|
| GOLDHL_1_QF                      |       |          |             | 0.00          |   | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain                            | Not modeled            | QF/Selfgen     |
| GRNLF1_1_UNITS                   | 32490 | GRNLEAF1 | 13.8        | 5.65          | 1 | Bogue, Drum-Rio Oso,<br>South of Table Mountain                                                           | Aug NQC                | QF/Selfgen     |
| GRNLF1_1_UNITS                   | 32490 | GRNLEAF1 | 13.8        | 28.84         | 2 | Bogue, Drum-Rio Oso,<br>South of Table Mountain                                                           | Aug NQC                | QF/Selfgen     |
| GRNLF2_1_UNIT                    | 32492 | GRNLEAF2 | 13.8        | 38.78         |   | Pease, Drum-Rio Oso,<br>South of Table Mountain                                                           | Aug NQC                | QF/Selfgen     |
| HALSEY_6_UNIT                    | 32478 | HALSEY F | 9.1         | 7.96          | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                | Aug NQC                | Market         |
| HAYPRS_6_QFUNTS                  | 32488 | HAYPRES+ | 9.1         | 0.14          |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                             | Aug NQC                | QF/Selfgen     |
| HAYPRS_6_QFUNTS                  | 32488 | HAYPRES+ | 9.1         | 0.15          |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                             | Aug NQC                | QF/Selfgen     |
| HIGGNS_1_COMBIE                  |       |          |             | 0.00          |   | Drum-Rio Oso, South of<br>Rio Oso, South of<br>Palermo, South of Table<br>Mountain                        | Energy Only            | Market         |
| HIGGNS_7_QFUNTS                  |       |          |             | 0.18          |   | Drum-Rio Oso, South of<br>Rio Oso, South of<br>Palermo, South of Table<br>Mountain                        | Not modeled<br>Aug NQC |                |
| KANAKA_1_UNIT                    |       |          |             | 0.00          |   | Drum-Rio Oso, South of<br>Table Mountain                                                                  | Not modeled<br>Aug NQC | MUNI           |
| KELYRG_6_UNIT                    | 31834 | KELLYRDG | 9.1         | 10.00         | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                                  | Aug NQC                | MUNI           |
| LODIEC_2_PL1X2                   | 38123 | LODI CT1 | 18          | 166.00        |   | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                         |                        | MUNI           |
| LODIEC_2_PL1X2                   | 38124 | LODI ST1 | 18          | 114.00        |   | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                         |                        | MUNI           |
| MDFKRL_2_PROJCT                  | 32456 | MIDLFORK | 13.8        | 62.18         |   | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                         | Aug NQC                | MUNI           |
| MDFKRL_2_PROJCT                  | 32456 | MIDLFORK | 13.8        | 62.18         | 2 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                         | Aug NQC                | MUNI           |
| MDFKRL_2_PROJCT                  | 32458 | RALSTON  | 13.8        | 84.32         |   | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                                         | Aug NQC                | MUNI           |
| NAROW1_2_UNIT                    |       | NARROWS1 | 9.1         | 9,58          |   | South of Table Mountain                                                                                   | Aug NQC                | Market         |
| NAROW2_2_UNIT<br>NWCSTL_7_UNIT 1 |       | NARROWS2 | 9.1<br>13.2 | 27.93<br>0.03 |   | South of Table Mountain<br>Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table | Aug NQC                | MUNI<br>Market |
| OROVIL_6_UNIT                    | 31888 | OROVLLE  | 9.1         | 4.87          | 1 | Mountain<br>Drum-Rio Oso, South of<br>Table Mountain                                                      | Aug NQC                | QF/Selfgen     |
| OXBOW_6_DRUM                     | 32484 | OXBOW F  | 9.1         | 6.00          | 1 | Weimer, Drum-Rio Oso,<br>South of Palermo, South of<br>Table Mountain                                     | Aug NQC                | MUNI           |
| PACORO_6_UNIT                    | 31890 | PO POWER | 9.1         | 7.20          | 1 | Drum-Rio Oso, South of Table Mountain                                                                     | Aug NQC                | QF/Selfgen     |
| PACORO_6_UNIT                    | 31890 | PO POWER | 9.1         | 7.21          | 2 | Drum-Rio Oso, South of                                                                                    | Aug NQC                | QF/Selfgen     |

|                 |       |          |      |       |   | Table Mountain                                                                             | <u> </u>               |            |
|-----------------|-------|----------|------|-------|---|--------------------------------------------------------------------------------------------|------------------------|------------|
| PLACVL_1_CHILIB | 32510 | CHILIBAR | 4.2  | 3.18  | 1 | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             | Aug NQC                | Market     |
| PLACVL_1_RCKCRE |       |          |      | 0.00  |   | Placerville, South of Rio<br>Oso, South of Palermo,<br>South of Table Mountain             | Not modeled<br>Aug NQC | Market     |
| PLSNTG_7_LNCLND | 32408 | PLSNT GR | 60   | 1.79  |   | Drum-Rio Oso, South of<br>Rio Oso, South of<br>Palermo, South of Table<br>Mountain         | Not modeled<br>Aug NQC | Market     |
| POEPH_7_UNIT 1  | 31790 | POE 1    | 13.8 | 60.00 | 1 | South of Palermo, South of<br>Table Mountain                                               | AUGNQC                 | Market     |
| POEPH_7_UNIT 2  | 31792 | POE 2    | 13.8 | 60.00 | 1 | South of Palermo, South of<br>Table Mountain                                               | Aug NQC                | Market     |
| RCKCRK_7_UNIT 1 | 31786 | ROCK CK1 | 13.8 | 56.00 | 1 | South of Palermo, South of<br>Table Mountain                                               | AUGNQC                 | Market     |
| RCKCRK_7_UNIT 2 | 31788 | ROCK CK2 | 13.8 | 56.00 | 1 | South of Palermo, South of<br>Table Mountain                                               | Aug NQC                | Market     |
| RIOOSO_1_QF     |       |          |      | 1.35  |   | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Not modeled<br>Aug NQC | QF/Selfgen |
| ROLLIN_6_UNIT   | 32476 | ROLLINSF | 9.1  | 11.09 | 1 | Weimer, Drum-Rio Oso,<br>South of Palermo, South of<br>Table Mountain                      | Aug NQC                | MUNI       |
| SLYCRK_1_UNIT 1 | 31832 | SLY.CR.  | 9.1  | 10.36 | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                | MUNI       |
| SPAULD_6_UNIT 3 | 32472 | SPAULDG  | 9.1  | 6.00  | 3 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market     |
| SPAULD_6_UNIT12 | 32472 | SPAULDG  | 9.1  | 4.96  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market     |
| SPAULD_6_UNIT12 | 32472 | SPAULDG  | 9.1  | 4.96  | 2 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain                              | Aug NQC                | Market     |
| SPI LI_2_UNIT 1 | 32498 | SPILINCF | 12.5 | 10.15 | 1 | Drum-Rio Oso, South of<br>Rio Oso, South of<br>Palermo, South of Table<br>Mountain         | Aug NQC                | QF/Selfgen |
| STIGCT_2_LODI   | 38114 | Stig CC  | 13.8 | 49.50 | 1 | South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain                          |                        | MUNI       |
| ULTRCK_2_UNIT   | 32500 | ULTR RCK | 9.1  | 21.80 | 1 | Drum-Rio Oso, South of<br>Rio Oso, South of<br>Palermo, South of Table<br>Mountain         | Aug NQC                | QF/Selfgen |
| WDLEAF_7_UNIT 1 | 31794 | WOODLEAF | 13.8 | 55.00 | 1 | Drum-Rio Oso, South of<br>Table Mountain                                                   | Aug NQC                | MUNI       |
| WHEATL_6_LNDFIL | 32350 | WHEATLND | 60   | 1.20  |   | South of Table Mountain                                                                    | Not modeled<br>Aug NQC | Market     |
| WISE_1_UNIT 1   | 32512 | WISE     | 12   | 11.57 | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain |                        | Market     |
| WISE_1_UNIT 2   | 32512 | WISE     | 12   | 0.12  | 1 | Placer, Drum-Rio Oso,<br>South of Rio Oso, South of<br>Palermo, South of Table<br>Mountain | Aug NQC                | Market     |
| YUBACT_1_SUNSWT | 32494 | YUBA CTY | 9.1  | 26.39 | 1 | Pease, Drum-Rio Oso,<br>South of Table Mountain                                            | Aug NQC                | QF/Selfgen |

| YUBACT_6_UNITA1 | 32496 | YCEC     | 13.8 | 46.00 |   | Pease, Drum-Rio Oso,<br>South of Table Mountain               |                        | Market     |
|-----------------|-------|----------|------|-------|---|---------------------------------------------------------------|------------------------|------------|
| NA              | 32162 | RIV.DLTA | 9.11 | 0.00  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain | No NQC -<br>hist. data | QF/Selfgen |
| UCDAVS_1_UNIT   | 32166 | UC DAVIS | 9.1  | 3.50  | 1 | Drum-Rio Oso, South of<br>Palermo, South of Table<br>Mountain | No NQC -<br>hist. data | QF/Selfgen |

## Major new projects modeled:

- 1. Table Mountain-Rio Oso Reconductor and Tower Upgrade
- 2. Palermo-Rio Oso 115 kV Reconductoring
- 3. Gold Hill-Missouri Flat #1 and #2 115 kV line Reconductoring
- 4. Rio Oso #1 and #2 230/115 kV Transformer Replacement
- 5. Gold Hill-Horseshoe 115 kV line Reconductoring
- 6. Vaca Dixon-Davis Voltage Conversion
- 7. New Rio Oso-Atlantic 230 kV line
- 8. South of Palermo 115 kV Reinforcement

# Critical Contingency Analysis Summary

## Placerville Sub-area

The most critical contingency is the loss of the Gold Hill-Clarksville 115 kV line followed by loss of the Gold Hill-Missouri Flat #2 115 kV line. The area limitation is thermal overloading of the Gold Hill-Missouri Flat #1 115 kV line. This limiting contingency establishes a local capacity need of 20 MW (includes 0 MW of QF and MUNI generation) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

## Placer Sub-area

The most critical contingency is the loss of the Gold Hill-Placer #2 115 kV line followed by loss of the Gold Hill-Placer #1 115 kV line. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a local capacity

need of 120 MW (includes 38 MW of QF and MUNI generation as well as 39 MW of deficiency) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Gold Hill-Placer #2 115 kV line followed with Chicago Park unit out of service. The area limitation is thermal overloading of the Drum-Higgins 115 kV line. This limiting contingency establishes a local capacity need of 114 MW (includes 38 MW of QF and MUNI generation as well as 26 MW of deficiency) in 2018.

## **Effectiveness factors:**

All units within this sub-area are needed therefore no effectiveness factor is required.

# Pease Sub-area

The most critical contingency is the loss of the Pease 115/60 kV transformer with Yuba City Energy Center unit out of service. The area limitation is thermal overloading of the Table Mountain-Pease 60 kV line. This limiting contingency establishes a LCR of 103 MW (includes 65 MW of QF generation) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area.

The most critical single contingency is the loss of the Pease 115/60 kV transformer. The area limitation is thermal overloading of the Table Mountain-Pease 60 kV line. This limiting contingency establishes a local capacity need of 67 MW (includes 65 MW of QF generation) in 2018.

# Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

# Bogue Sub-area

No requirements due to the Palermo-Rio Oso 115 kV reconductoring project.

#### Drum-Rio Oso Sub-area

No requirements due to the Rio Oso 230/115 kV transformers replacement project.

## South of Rio Oso Sub-area

No requirements due to the addition of the new Rio Oso-Atlantic 230 kV line.

## South of Palermo Sub-area

No requirements due to the South of Palermo reinforcement project.

## South of Table Mountain Sub-area

The most critical contingency is the loss of the Table Mountain-Rio Oso and Table Mountain-Palermo 230 kV double circuit tower line outage. The area limitation is thermal overloading of the Caribou-Palermo 115 kV line. This limitation establishes a local capacity need of 1114 MW in 2018 (includes 180 MW of QF and 1108 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of the Table Mountain-Rio Oso line with Belden unit out of service. The area limitation is thermal overloading of the Table Mountain-Palermo 230 kV line. This limiting contingency establishes a local capacity need of 864 MW (includes 180 MW of QF and 1108 MW of MUNI generation) in 2018.

#### **Effectiveness factors:**

The following table has effectiveness factor to the most critical contingency.

| Gen Bus # | Gen Name | Gen ID | Eff Fctr (%) |
|-----------|----------|--------|--------------|
| 31814     | FORBSTWN | 1      | 7            |
| 31794     | WOODLEAF | 1      | 7            |
| 31832     | SLY.CR.  | 1      | 7            |
| 31862     | DEADWOOD | 1      | 7            |
| 31890     | PO POWER | 1      | 6            |
| 31890     | PO POWER | 2      | 6            |
| 31888     | OROVLLE  | 1      | 6            |
| 31834     | KELLYRDG | 1      | 6            |
| 32450     | COLGATE1 | 1      | 4            |

| 32466 | NARROWS1 | 1 | 4 |
|-------|----------|---|---|
| 32468 | NARROWS2 | 1 | 4 |
| 32452 | COLGATE2 | 1 | 4 |
| 32470 | CMP.FARW | 1 | 4 |
| 32451 | FREC     | 1 | 4 |
| 32490 | GRNLEAF1 | 1 | 4 |
| 32490 | GRNLEAF1 | 2 | 4 |
| 32496 | YCEC     | 1 | 4 |
| 32494 | YUBA CTY | 1 | 4 |
| 32492 | GRNLEAF2 | 1 | 4 |
| 32498 | SPILINCF | 1 | 2 |
| 31788 | ROCK CK2 | 1 | 2 |
| 31812 | CRESTA   | 1 | 2 |
| 31812 | CRESTA   | 2 | 2 |
| 31820 | BCKS CRK | 1 | 2 |
| 31820 | BCKS CRK | 2 | 2 |
| 31786 | ROCK CK1 | 1 | 2 |
| 31790 | POE 1    | 1 | 2 |
| 31792 | POE 2    | 1 | 2 |
| 31784 | BELDEN   | 1 | 2 |
| 32500 | ULTR RCK | 1 | 2 |
| 32156 | WOODLAND | 1 | 2 |
| 32510 | CHILIBAR | 1 | 2 |
| 32513 | ELDRAD01 | 1 | 2 |
| 32514 | ELDRADO2 | 1 | 2 |
| 32478 | HALSEY F | 1 | 2 |
| 32460 | NEWCSTLE | 1 | 1 |
| 32458 | RALSTON  | 1 | 1 |
| 32512 | WISE     | 1 | 1 |
| 32456 | MIDLFORK | 1 | 1 |
| 32456 | MIDLFORK | 2 | 1 |
| 32486 | HELLHOLE | 1 | 1 |
| 32508 | FRNCH MD | 1 | 1 |
| 32162 | RIV.DLTA | 1 | 1 |
| 32502 | DTCHFLT2 | 1 | 1 |
| 32462 | CHI.PARK | 1 | 1 |
| 32464 | DTCHFLT1 | 1 | 1 |
| 32454 | DRUM 5   | 1 | 1 |
| 32476 | ROLLINSF | 1 | 1 |
| 32484 | OXBOW F  | 1 | 1 |
| 32474 | DEER CRK | 1 | 1 |
| 32504 | DRUM 1-2 | 1 | 1 |
| 32504 | DRUM 1-2 | 2 | 1 |
|       |          |   |   |

| 32506 | DRUM 3-4 | 1 | 1 |
|-------|----------|---|---|
| 32506 | DRUM 3-4 | 2 | 1 |
| 32166 | UC DAVIS | 1 | 1 |
| 32472 | SPAULDG  | 1 | 1 |
| 32472 | SPAULDG  | 2 | 1 |
| 32472 | SPAULDG  | 3 | 1 |
| 32480 | BOWMAN   | 1 | 1 |
| 32488 | HAYPRES+ | 1 | 1 |
| 32488 | HAYPRES+ | 2 | 1 |
| 38124 | LODI ST1 | 1 | 1 |
| 38123 | LODI CT1 | 1 | 1 |
| 38114 | STIG CC  | 1 | 1 |

## Changes compared to last year's results:

The load forecast went up by 32 MW or about 1.5% as compared to 2017. Overall the total LCR for 2018 for the Sierra area has decreased by 816 MW for category C and by 426 MW for category B as compared to the 2017 LCR mainly due to the implementation of South of Palermo Reinforcement transmission project.

#### Sierra Overall Requirements:

|                      | QF   | Muni | Market | Max. Qualifying |
|----------------------|------|------|--------|-----------------|
|                      | (MW) | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 180  | 1108 | 762    | 2050            |

| 2018                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|---------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>9</sup>    | 864                                         | 26                 | 890                     |
| Category C (Multiple) <sup>10</sup> | 1114                                        | 39                 | 1153                    |

<sup>&</sup>lt;sup>9</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within

a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>10</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

# 4. Stockton Area

## Area Definition

The transmission facilities that establish the boundary of the Tesla-Bellota sub-area are:

- 1) Bellota 230/115 kV Transformer #1
- 2) Bellota 230/115 kV Transformer #2
- 3) Tesla-Tracy 115 kV Line
- 4) Tesla-Salado 115 kV Line
- 5) Tesla-Salado-Manteca 115 kV line
- 6) Tesla-Schulte #1 115 kV Line
- 7) Tesla-Schulte #2 115kV line
- 8) Tesla-Vierra 115 kV Line

The substations that delineate the Tesla-Bellota Sub-area are:

- 1) Bellota 230 kV is out Bellota 115 kV is in
- 2) Bellota 230 kV is out Bellota 115 kV is in
- 3) Tesla is out Tracy is in
- 4) Tesla is out Salado is in
- 5) Tesla is out Salado and Manteca are in
- 6) Tesla is out Schulte is in
- 7) Tesla is out Schulte is in
- 8) Tesla is out Thermal Energy is in

The transmission facilities that establish the boundary of the Lockeford sub-area are:

- 1) Lockeford-Industrial 60 kV line
- 2) Lockeford-Lodi #1 60 kV line
- 3) Lockeford-Lodi #2 60 kV line
- 4) Lockeford-Lodi #3 60 kV line

The substations that delineate the Lockeford Sub-area are:

- 1) Lockeford is out Industrial is in
- 2) Lockeford is out Lodi is in
- 3) Lockeford is out Lodi is in
- 4) Lockeford is out Lodi is in

The transmission facilities that establish the boundary of the Weber Sub-area are:

- 1) Weber 230/60 kV Transformer #1
- 2) Weber 230/60 kV Transformer #2

The substations that delineate the Weber Sub-area are:

- 1) Weber 230 kV is out Weber 60 kV is in
- 2) Weber 230 kV is out Weber 60 kV is in

Total 2018 busload within the defined area: 1203 MW with 21 MW of losses resulting in total load + losses of 1224 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC    |   | LCR SUB-<br>AREA NAME        | NQC Comments        | CAISO Tag  |
|--------------------------|-------|----------|------|--------|---|------------------------------|---------------------|------------|
| BEARDS_7_UNIT 1          | 34074 | BEARDSLY | 6.9  | 8.36   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 1.84   | 1 | Tesla-Bellota                | Aug NQC             | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 1.84   | 2 | Tesla-Bellota                | Aug NQC             | MUNI       |
| CAMCHE_1_PL1X3           | 33850 | CAMANCHE | 4.2  | 1.85   | 3 | Tesla-Bellota                | Aug NQC             | MUNI       |
| CURIS_1_QF               |       |          |      | 0.90   |   | Tesla-Bellota                | Not modeled Aug NQC | QF/Selfgen |
| DONNLS_7_UNIT            | 34058 | DONNELLS | 13.8 | 72.00  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | MUNI       |
| FROGTN_7_UTICA           |       |          |      | 0.00   |   | Tesla-Bellota,<br>Stanislaus | Energy Only         | Market     |
| LODI25_2_UNIT 1          | 38120 | LODI25CT | 9.11 | 22.70  | 1 | Lockeford                    |                     | MUNI       |
| PHOENX_1_UNIT            |       |          |      | 1.36   |   | Tesla-Bellota,<br>Stanislaus | Not modeled Aug NQC | Market     |
| SCHLTE_1_PL1X3           | 33805 | GWFTRCY1 | 13.8 | 83.56  | 1 | Tesla-Bellota                |                     | Market     |
| SCHLTE_1_PL1X3           | 33807 | GWFTRCY2 | 13.8 | 82.88  | 1 | Tesla-Bellota                |                     | Market     |
| SCHLTE_1_PL1X3           | 33811 | GWFTRCY3 | 13.8 | 132.96 | 1 | Tesla-Bellota                |                     | Market     |
| SNDBAR_7_UNIT 1          | 34060 | SANDBAR  | 13.8 | 13.91  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | MUNI       |
| SPIFBD_1_PL1X2           | 33917 | FBERBORD | 115  | 1.26   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | QF/Selfgen |
| SPRGAP_1_UNIT 1          | 34078 | SPRNG GP | 6    | 0.06   | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | Market     |
| STANIS_7_UNIT 1          | 34062 | STANISLS | 13.8 | 91.00  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | Market     |
| STNRES_1_UNIT            | 34056 | STNSLSRP | 13.8 | 16.01  | 1 | Tesla-Bellota                | Aug NQC             | QF/Selfgen |
| STOKCG_1_UNIT 1          | 33814 | CPC STCN | 12.5 | 32.67  | 1 | Tesla-Bellota                | Aug NQC             | QF/Selfgen |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 8.23   | 1 | Tesla-Bellota                | Aug NQC             | MUNI       |
| TULLCK_7_UNITS           | 34076 | TULLOCH  | 6.9  | 8.24   | 2 | Tesla-Bellota                | Aug NQC             | MUNI       |
| ULTPCH_1_UNIT 1          | 34050 | CH.STN.  | 13.8 | 16.98  | 1 | Tesla-Bellota,<br>Stanislaus | Aug NQC             | QF/Selfgen |
| VLYHOM_7_SSJID           |       |          |      | 1.41   |   | Tesla-Bellota,<br>Stanislaus | Not modeled Aug NQC | QF/Selfgen |
| NA                       | 33687 | STKTN WW | 60   | 1.50   | 1 | Weber                        | No NQC - hist. data | QF/Selfgen |
| NA                       | 33830 | GEN.MILL | 9.11 | 2.50   | 1 | Lockeford                    | No NQC - hist. data | QF/Selfgen |
| COGNAT_1_UNIT            | 33818 | COG.NTNL | 12   | 0.00   | 1 | Weber                        | Retired             | QF/Selfgen |

Total units and qualifying capacity available in this area:

# Major new projects modeled:

- 1. Weber 230/60 kV Transformer Nos. 2 & 2A Replacement
- 2. Weber-Stockton "A" #1 and #2 60 kV Reconductoring
- 3. Vierra 115 kV Loop-in

# Critical Contingency Analysis Summary

## Stanislaus Sub-area

The critical contingency for the Stanislaus area is the loss of Bellota-Riverbank-Melones 115 kV circuit with Stanislaus PH out of service. The area limitation is thermal overloading of the River Bank Jct.-Manteca 115 kV line. This limiting contingency establishes a local capacity need of 134 MW (including 20 MW of QF and 94 MW of MUNI generation) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor.

## Tesla-Bellota Sub-area

The most critical contingency for the Tesla-Bellota pocket is the loss of Tesla-Vierra 115 kV and the new Tesla-Schulte #2 115 kV lines. The area limitation is thermal overload of the Tesla-Schulte #1 115 kV line above its emergency rating. This limiting contingency establishes a local capacity need of 347 MW (includes 69 MW of QF and 116 MW of MUNI generation) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area

The most critical single contingency for the Tesla-Bellota pocket is the loss of the Tesla-Schulte #2 115 kV line and the loss of the GWF Tracy unit #3. The area limitation is the thermal overload of the Tesla-Schulte #1 115 kV line. This single contingency establishes a local capacity need of 284 MW (includes 69 MW of QF and 116 MW of MUNI generation) in 2018.

#### **Effectiveness factors:**

The effectiveness factors for the most critical contingency are listed below:

| Gen Bus# | Gen Name | Gen ID | Eff Fctr (%) |
|----------|----------|--------|--------------|
| 33805    | GWFTRCY1 | 1      | 71.23        |
| 33807    | GWFTRCY2 | 1      | 71.23        |

| 33811 | Q268ST1  | 1 | 71.22 |
|-------|----------|---|-------|
| 33808 | SJ COGEN | 1 | 34.59 |
| 33810 | SP CMPNY | 1 | 30.68 |
| 34062 | STANISLS | 1 | 27.95 |
| 34050 | CH.STN.  | 1 | 22.61 |
| 33917 | FBERBORD | 1 | 22.28 |
| 34078 | SPRNG GP | 1 | 20.29 |
| 34060 | SANDBAR  | 1 | 20.09 |
| 34074 | BEARDSLY | 1 | 19.93 |
| 34058 | DONNELLS | 1 | 19.75 |
| 34076 | TULLOCH  | 1 | 17.66 |
| 34076 | TULLOCH  | 2 | 17.66 |
| 33806 | TH.E.DV. | 1 | 8.72  |
| 34056 | STNSLSRP | 1 | 8.14  |
| 33814 | CPC STCN | 1 | 3.37  |
| 33850 | CAMANCHE | 1 | 3.35  |
| 33850 | CAMANCHE | 2 | 3.35  |
| 33850 | CAMANCHE | 3 | 3.35  |
| 33804 | BELLTA T | 1 | 0.49  |

All of the resources needed to meet the Stanislaus sub-area count towards the Tesla-Bellota sub-area LCR need.

## Lockeford Sub-area

The critical contingency for the Lockeford area is the loss of Lockeford-Industrial 60 kV circuit and Lockeford-Lodi #2 60 kV circuit. The area limitation is thermal overloading of the Lockeford-Lodi Jct. section of the Lockeford-Lodi #3 60 kV circuit. This limiting contingency establishes a local capacity need of 61 MW (including 25 MW of QF and MUNI as well as 36 MW of deficiency) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

## Weber Sub-area

The critical contingency for the Weber area is the loss of Stockton A-Weber #1 & #2 60 kV lines. The area limitation is thermal overloading of the Stockton A-Weber #3 60 kV line. This limiting contingency establishes a local capacity need of 10 MW (including 2 MW of QF generation as well as 8 MW of deficiency) in 2018 as the minimum capacity necessary for reliable load serving capability within this sub-area.

## Effectiveness factors:

All units within this sub-area have the same effectiveness factor.

## Stockton Overall

The requirement for this area is driven by the sum of requirements for the Tesla-Bellota, Lockeford and Weber sub-areas.

## Changes compared to last year's results:

The 2018 load forecast went up by 10 MW or about 1.5% and the overall LCR has decreased by 22 MW as compared to the 2017 mainly due to identification of units with higher effectiveness for the limiting constraint.

## Stockton Overall Requirements:

|                      | QF   | Muni | Market | Max. Qualifying |
|----------------------|------|------|--------|-----------------|
|                      | (MW) | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 73   | 139  | 392    | 604             |

| 2018                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|---------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>11</sup>   | 284                                         | 0                  | 284                     |
| Category C (Multiple) <sup>12</sup> | 374                                         | 44                 | 418                     |

<sup>&</sup>lt;sup>11</sup> A single contingency means that the system will be able the survive the loss of a single element,

however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>12</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

## 5. Greater Bay Area

#### Area Definition

The transmission tie lines into the Greater Bay Area are:

- 1) Lakeville-Sobrante 230 kV
- 2) Ignacio-Sobrante 230 kV
- 3) Parkway-Moraga 230 kV
- 4) Bahia-Moraga 230 kV
- 5) Lambie SW Sta-Vaca Dixon 230 kV
- 6) Peabody-Contra Costa P.P. 230 kV
- 7) Tesla-Kelso 230 kV
- 8) Tesla-Delta Switching Yard 230 kV
- 9) Tesla-Pittsburg #1 230 kV
- 10) Tesla-Pittsburg #2 230 kV
- 11) Tesla-Newark #1 230 kV
- 12) Tesla-Newark #2 230 kV
- 13) Tesla-Ravenswood 230 kV
- 14) Tesla-Metcalf 500 kV
- 15) Moss Landing-Metcalf 500 kV
- 16) Moss Landing-Metcalf #1 230 kV
- 17) Moss Landing-Metcalf #2 230 kV
- 18) Oakdale TID-Newark #1 115 kV
- 19) Oakdale TID-Newark #2 115 kV

The substations that delineate the Greater Bay Area are:

- 1) Lakeville is out Sobrante is in
- 2) Ignacio is out Sobrante is in
- 3) Parkway is out Moraga is in
- 4) Bahia is out Moraga is in
- 5) Lambie SW Sta is in Vaca Dixon is out
- 6) Peabody is out Contra Costa P.P. is in
- 7) Tesla is out Kelso is in
- 8) Tesla is out Delta Switching Yard is in
- 9) Tesla is out Pittsburg is in
- 10) Tesla is out Pittsburg is in
- 11) Tesla is out Newark is in
- 12) Tesla is out Newark is in
- 13) Tesla is out Ravenswood is in
- 14) Tesla is out Metcalf is in
- 15) Moss Landing is out Metcalf is in
- 16) Moss Landing is out Metcalf is in
- 17) Moss Landing is out Metcalf is in
- 18) Oakdale TID is out Newark is in
- 19) Oakdale TID is out Newark is in

Total 2017 busload within the defined area: 10473 MW with 229 MW of losses and 234 MW of pumps resulting in total load + losses + pumps of 10936 MW.

| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI                             |
|------------------------------------------------------------------------------------------|
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI                             |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI                             |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI                             |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI                             |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>VSelfgen<br>Wind<br>Wind<br>Wind |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>Vind<br>Wind<br>Wind                     |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>MUNI<br>VSelfgen<br>Wind<br>Wind<br>Wind                 |
| MUNI<br>MUNI<br>MUNI<br>MUNI<br>Selfgen<br>Wind<br>Wind<br>Wind                          |
| MUNI<br>MUNI<br>/Selfgen<br>Wind<br>Wind<br>Wind                                         |
| MUNI<br>MUNI<br>/Selfgen<br>Wind<br>Wind<br>Wind                                         |
| MUNI<br>(Selfgen<br>Wind<br>Wind<br>Wind                                                 |
| /Selfgen<br>Wind<br>Wind<br>Wind                                                         |
| Wind<br>Wind<br>Wind                                                                     |
| Wind<br>Wind                                                                             |
| Wind                                                                                     |
|                                                                                          |
|                                                                                          |
| Wind                                                                                     |
| Wind                                                                                     |
| Wind                                                                                     |
| Wind                                                                                     |
| /Selfgen                                                                                 |
| /Selfgen                                                                                 |
| /Selfgen                                                                                 |
| /Selfgen                                                                                 |
| 1arket                                                                                   |
| larket                                                                                   |
| /Selfgen                                                                                 |
| /Selfgen                                                                                 |
| MUNI                                                                                     |
| MUNI                                                                                     |
| MUNI                                                                                     |
| MUNI                                                                                     |
| larket                                                                                   |
| larket                                                                                   |
| larket                                                                                   |
| larket                                                                                   |
| MUNI                                                                                     |
| NUNI                                                                                     |
| NUNI                                                                                     |
| Wind                                                                                     |
| larket                                                                                   |
| larket                                                                                   |
|                                                                                          |

Total units and qualifying capacity available in this area:

| GATWAY 2 PL1X3  | 33120 | GATEWAY3 | 18   | 185.36 | 1 | Contra Costa               | Aug NQC             | Market     |
|-----------------|-------|----------|------|--------|---|----------------------------|---------------------|------------|
| GILROY 1 UNIT   |       | GLRY COG | 13.8 | 69.30  | 1 | Llagas                     | Aug NQC             | Market     |
| GILROY 1 UNIT   |       | GLRY COG | 13.8 | 35.70  | 2 | Llagas                     | Aug NQC             | Market     |
| GILRPP 1 PL1X2  |       | GROYPKR1 | 13.8 | 45.50  | 1 | Llagas                     | Aug NQC             | Market     |
| GILRPP 1 PL1X2  |       | GROYPKR2 | 13.8 | 45.50  | 1 | Llagas                     | Aug NQC             | Market     |
| GILRPP 1 PL3X4  |       | GROYPKR3 | 13.8 | 46.00  | 1 | Llagas                     | Aug NQC             | Market     |
|                 | 32740 | HILLSIDE | 115  | 24.88  | 1 | None                       | Aug NQC             | QF/Selfgen |
|                 |       |          | 115  |        |   | Pittsburg,                 |                     |            |
| GWFPW1_6_UNIT   |       | GWF #1   | 9.11 | 16.55  | 1 | Contra Costa               | Aug NQC             | QF/Selfgen |
| GWFPW2_1_UNIT 1 | 33132 | GWF #2   | 13.8 | 17.87  | 1 | Pittsburg                  | Aug NQC             | QF/Selfgen |
| GWFPW3_1_UNIT 1 | 33133 | GWF #3   | 13.8 | 15.95  | 1 | Pittsburg,<br>Contra Costa | Aug NQC             | QF/Selfgen |
| GWFPW4_6_UNIT 1 | 33134 | GWF #4   | 13.8 | 18.23  | 1 | Pittsburg,<br>Contra Costa | Aug NQC             | QF/Selfgen |
| GWFPW5_6_UNIT 1 | 33135 | GWF #5   | 13.8 | 18.10  | 1 | Pittsburg                  | Aug NQC             | QF/Selfgen |
| HICKS_7_GUADLP  |       |          |      | 1.84   |   | None                       | Not modeled Aug NQC | QF/Selfgen |
| KELSO_2_UNITS   | 33813 | MARIPCT1 | 13.8 | 45.95  | 1 | Contra Costa               | Aug NQC             | Market     |
| KELSO_2_UNITS   | 33815 | MARIPCT2 | 13.8 | 45.95  | 2 | Contra Costa               | Aug NQC             | Market     |
| KELSO_2_UNITS   | 33817 | MARIPCT3 | 13.8 | 45.95  | 3 | Contra Costa               | Aug NQC             | Market     |
| KELSO_2_UNITS   | 33819 | MARIPCT4 | 13.8 | 45.96  | 4 | Contra Costa               | Aug NQC             | Market     |
| KIRKER 7 KELCYN | 32951 | KIRKER   | 115  | 3.21   |   | Pittsburg                  | Not modeled         | Market     |
| LAWRNC 7 SUNYVL |       |          |      | 0.14   |   | None                       | Not modeled Aug NQC | Market     |
| LECEF_1_UNITS   | 35854 | LECEFGT1 | 13.8 | 46.50  | 1 | San Jose                   | Aug NQC             | Market     |
| LECEF 1 UNITS   | 35855 | LECEFGT2 | 13.8 | 46.50  | 1 | San Jose                   | Aug NQC             | Market     |
| LECEF 1 UNITS   | 35856 | LECEFGT3 | 13.8 | 46.50  | 1 | San Jose                   | Aug NQC             | Market     |
| LECEF 1 UNITS   |       | LECEFGT4 | 13.8 | 46.50  | 1 | San Jose                   | Aug NQC             | Market     |
| LFC 51 2 UNIT 1 |       | LFC FIN+ | 9.11 | 1.91   | 1 | None                       | Aug NQC             | Wind       |
|                 |       | LAMBGT1  | 13.8 | 47.00  | 1 | Contra Costa               | Aug NQC             | Market     |
|                 |       | GOOSEHGT | 13.8 | 46.00  | 2 | Contra Costa               | Aug NQC             | Market     |
| LMBEPK 2 UNITA3 |       | CREEDGT1 | 13.8 | 47.00  | 3 | Contra Costa               | Aug NQC             | Market     |
| LMEC 1 PL1X3    |       | LMECCT2  | 18   | 163.20 | 1 | Pittsburg                  | Aug NQC             | Market     |
| LMEC 1 PL1X3    | 33112 | LMECCT1  | 18   | 163.20 | 1 | Pittsburg                  | Aug NQC             | Market     |
| LMEC 1 PL1X3    | 33113 | LMECST1  | 18   | 229.60 | 1 | Pittsburg                  | Aug NQC             | Market     |
| MARKHM 1 CATLST |       | CATALYST | 9.11 | 0.00   | 1 | San Jose                   |                     | QF/Selfgen |
| MARTIN 1 SUNSET | 55605 | CATALIST | 9.11 | 1.59   | I | None                       | Not modeled Aug NQC |            |
| METCLF_1_QF     |       |          |      | 0.22   |   | None                       | Not modeled Aug NQC |            |
| METEC 2 PL1X3   | 35881 | MEC CTG1 | 18   | 178.43 | 1 | None                       | Aug NQC             | Market     |
| METEC_2_PL1X3   |       | MEC CTG2 | 18   | 178.43 | 1 | None                       | Aug NQC             | Market     |
| METEC_2_PL1X3   |       | MEC STG1 | 18   | 213.14 | 1 | None                       | Aug NQC             | Market     |
| MILBRA_1_QF     |       |          |      | 0.00   |   | None                       | Not modeled         | QF/Selfgen |
| MISSIX_1_QF     | ł – – |          |      | 0.25   |   | None                       | Not modeled Aug NQC |            |
| MLPTAS_7_QFUNTS |       |          |      | 0.01   |   | San Jose                   | Not modeled Aug NQC |            |
| MNTAGU 7 NEWBYI |       |          |      | 2.09   |   | None                       | Not modeled Aug NQC |            |
| NEWARK 1 QF     |       |          |      | 0.03   |   | None                       | Not modeled Aug NQC |            |
| OAK C_7_UNIT 1  | 32901 | OAKLND 1 | 13.8 | 55.00  | 1 | Oakland                    |                     | Market     |
| OAK C_7_UNIT 2  | 32902 | OAKLND 2 | 13.8 | 55.00  | 1 | Oakland                    |                     | Market     |
| OAK C 7 UNIT 3  |       | OAKLND 3 | 13.8 | 55.00  | 1 | Oakland                    |                     | Market     |
| OAK L 7 EBMUD   |       |          |      | 0.66   |   | Oakland                    | Not modeled Aug NQC | MUNI       |
| OXMTN_6_LNDFIL  | 33469 | OX_MTN   | 4.16 | 1.45   | 1 | None                       |                     | Market     |
| OXMTN 6 LNDFIL  |       | OX MTN   | 4.16 | 1.45   | 2 | None                       |                     | Market     |
| OXMTN 6 LNDFIL  |       | OX MTN   | 4.16 | 1.45   | 3 | None                       |                     | Market     |
| OXMTN_6_LNDFIL  |       | OX MTN   | 4.16 | 1.45   | 4 | None                       |                     | Market     |
| OXMTN 6 LNDFIL  |       | OX MTN   | 4.16 | 1.45   | 5 | None                       |                     | Market     |
|                 |       | 1        |      |        | 2 |                            | I                   |            |

| OXMTN 6 LNDFIL  | 33469 | ΟΧ ΜΤΝ   | 4.16 | 1.45   | 6 | None         |                     | Market     |
|-----------------|-------|----------|------|--------|---|--------------|---------------------|------------|
| OXMTN 6 LNDFIL  |       | OX MTN   | 4.16 | 1.45   | 7 | None         |                     | Market     |
| PALALT 7 COBUG  |       |          |      | 4.50   |   | None         | Not modeled         | MUNI       |
|                 | 33105 | PTSB 5   | 18   | 312.00 | 1 | Pittsburg    |                     | Market     |
|                 | 33106 | PTSB 6   | 18   | 317.00 | 1 | Pittsburg    |                     | Market     |
|                 |       | PTSB 7   | 20   | 682.00 | 1 | Pittsburg    |                     | Market     |
| RICHMN 7 BAYENV |       |          | -    | 2.00   |   | None         | Not modeled Aug NQC |            |
| RVRVEW_1_UNITA1 | 33178 | RVEC_GEN | 13.8 | 46.00  | 1 | Contra Costa | Aug NQC             | Market     |
| SEAWST_6_LAPOS  | 35312 | SEAWESTF | 9.11 | 0.28   | 1 | Contra Costa | Aug NQC             | Wind       |
| SRINTL_6_UNIT   | 33468 | SRI INTL | 9.11 | 0.96   | 1 | None         | Aug NQC             | QF/Selfgen |
| STAUFF 1 UNIT   | 33139 | STAUFER  | 9.11 | 0.01   | 1 | None         | Aug NQC             | QF/Selfgen |
| STOILS_1_UNITS  | 32921 | CHEVGEN1 | 13.8 | 1.41   | 1 | Pittsburg    | Aug NQC             | QF/Selfgen |
| STOILS 1 UNITS  | 32922 | CHEVGEN2 | 13.8 | 1.41   | 1 | Pittsburg    | Aug NQC             | QF/Selfgen |
|                 |       | FOSTER W | 12.5 | 5.86   | 1 | Pittsburg    | Aug NQC             | QF/Selfgen |
|                 |       | FOSTER W | 12.5 | 5.86   | 2 | Pittsburg    | Aug NQC             | QF/Selfgen |
| TIDWTR_2_UNITS  |       | FOSTER W | 12.5 | 5.86   | 3 | Pittsburg    | Aug NQC             | QF/Selfgen |
| UNCHEM 1 UNIT   | 32920 | UNION CH | 9.11 | 17.59  | 1 | Pittsburg    | Aug NQC             | QF/Selfgen |
|                 | 32910 | UNOCAL   | 12   | 0.03   | 1 | Pittsburg    | Aug NQC             | QF/Selfgen |
|                 | 32910 | UNOCAL   | 12   | 0.03   | 2 | Pittsburg    | Aug NQC             | QF/Selfgen |
|                 | 32910 | UNOCAL   | 12   | 0.04   | 3 | Pittsburg    | Aug NQC             | QF/Selfgen |
|                 | 33466 | UNTED CO | 9.11 | 25.08  | 1 | None         | Aug NQC             | QF/Selfgen |
|                 |       | SOLANOWP | 21   | 18.11  | 1 | Contra Costa | Aug NQC             | Wind       |
|                 |       | EXNCO    | 9.11 | 19.81  | 1 | Contra Costa | Aug NQC             | Wind       |
|                 |       | USW FRIC | 12   | 0.47   | 1 | Contra Costa | Aug NQC             | Wind       |
|                 |       | USW FRIC | 12   | 0.47   | 2 | Contra Costa | Aug NQC             | Wind       |
|                 |       | USWP_#3  | 9.11 | 12.69  | 1 | Contra Costa | Aug NQC             | Wind       |
|                 |       | WINDMSTR | 9.11 | 3.21   | 1 | Contra Costa | Aug NQC             | Wind       |
| ZOND 6 UNIT     |       | ZOND SYS | 9.11 | 4.00   | 1 | Contra Costa | Aug NQC             | Wind       |
| IBMCTL 1 UNIT 1 | 35637 | IBM-CTLE | 115  | 0.00   | 1 | San Jose     | No NQC - hist. data | Market     |
|                 | 33136 | CCCSD    | 12.5 | 4.40   | 1 | Pittsburg    | No NQC - hist. data | QF/Selfgen |
|                 | 33141 | SHELL 1  | 12.5 | 20.00  | 1 | Pittsburg    | No NQC - hist. data | QF/Selfgen |
|                 |       | SHELL 2  | 12.5 | 40.00  | 1 | Pittsburg    | No NQC - hist. data | QF/Selfgen |
|                 | 33143 | SHELL 3  | 12.5 | 40.00  | 1 | Pittsburg    | No NQC - hist. data | QF/Selfgen |
|                 |       | SJ-SCL W | 9.11 | 5.00   | 1 | San Jose     | No NQC - hist. data | QF/Selfgen |
|                 |       | MARSHBS1 | 16.4 | 193.50 | 1 | Contra Costa | No NQC - Pmax       | Market     |
|                 |       | MARSHBS1 |      |        | 2 | Contra Costa | No NQC - Pmax       | Market     |
|                 |       | MARSHBS2 |      |        | 3 | Contra Costa | No NQC - Pmax       | Market     |
|                 |       | MARSHBS2 | 16.4 | 193.50 | 4 | Contra Costa | No NQC - Pmax       | Market     |
| LECEF 1 UNITS   |       | LECEFST1 | 13.8 | 120.00 | 1 | San Jose     | No NQC - Pmax       | Market     |
| New Unit        |       | RPSP1001 | 34.5 |        | 1 | Contra Costa | No NQC - est. data  | Wind       |
| New Unit        |       | RPSP1012 | 34.5 | 9.80   | 1 | Contra Costa | No NQC - est. data  | Wind       |
|                 |       | RUSELCT1 | 15   | 177.50 | 1 | None         | No NQC - Pmax       | Market     |
|                 |       | RUSELCT2 | 15   | 177.50 | 1 | None         | No NQC - Pmax       | Market     |
|                 |       | RUSELST1 | 15   | 245.00 | 1 | None         | No NQC - Pmax       | Market     |
|                 |       | RPSP1002 | 0.69 | 24.00  | 1 | Contra Costa | No NQC - est. data  | Wind       |
| New Unit        |       | RPSP1010 | 0.58 | 33.00  | 1 | Contra Costa | No NQC - est. data  | Wind       |
| New Unit        |       | RPSP1011 | 0.58 | 33.00  | 1 | Contra Costa | No NQC - est. data  | Wind       |
|                 |       | OAKLYCT1 | 18   | 221.00 | 1 | Contra Costa | No NQC - Pmax       | Market     |
|                 |       | OAKLYCT2 | 18   | 215.00 | 2 | Contra Costa | No NQC - Pmax       | Market     |
|                 |       | OAKLYST1 | 18   | 215.00 | 3 | Contra Costa | No NQC - Pmax       | Market     |
|                 | 33100 | J        | .0   | 210.00 | Ŭ | 201114 00014 |                     | market     |

# Major new projects modeled:

- 1. Moraga #2 230/115 kV transformer replacement
- 2. Tesla-Pittsburg 230 kV Reconductoring
- 3. Vaca Dixon-Birds Landing 230 kV Reinforcement
- 4. Contra Costa-Las Positas 230 kV Reconductoring
- 5. Newark-Ravenswood 230 kV Reconductoring
- 6. Contra Costa-Moraga 230 kV Line #1 & #2 Reconductoring
- 7. Vaca Dixon-Lakeville 230 kV line Reconductoring
- 8. Tesla-Ravenswood 230kV Line Reconductoring
- 9. East Shore-Oakland J 115 kV Reconductoring Project
- 10. Evergreen-Mabury Conversion to 115 kV
- 11. Metcalf-Evergreen 115 kV Line Reconductoring
- 12. Metcalf-Piercy & Swift and Newark-Dixon Landing 115 kV Upgrade
- 13. Marsh Landing Generating Station
- 14. Los Esteros Critical Energy Facility (LECEF) capacity increase
- 15. Russel City
- 16. Oakley Generating Station

# Critical Contingency Analysis Summary

## **Oakland Sub-area**

The critical contingency for the Oakland pocket is the loss of either Moraga-Claremont #1 or #2 115 kV line with one of the Oakland CTs out of service. The area limitation is thermal overloading of the remaining Moraga-Claremont 115 kV lines above their emergency rating. This limiting contingency establishes a local capacity need of 204 MW in 2018 (includes 49 MW of MUNI generation) as minimum capacity necessary for reliable load serving capability within this sub-area.

# Effectiveness factors:

All units within this sub-area have the same effectiveness factor. Units outside of this sub-area are not effective.

## Llagas Sub-area

The most critical contingency is an outage of Metcalf D-Morgan Hill 115 kV line with one of the Gilroy Peaker off-line. The area limitation is thermal overload on the Morgan Hill-Llagas 115 kV Line as well as 5% voltage drop at the Morgan Hill substation. This limiting contingency establishes a local capacity need of 136 MW in 2018 (includes 0 MW of QF and MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this sub-area have the same effectiveness factor. Units outside of this sub-area are not effective.

## San Jose Sub-area

The most critical contingency in the San Jose area is the common mode outage of Metcalf – Evergreen #1 and #2 115 kV lines. The limiting element is the Metcalf - Piercy 115 kV line and establishes a local capacity 575 MW in 2018 (includes 59 MW of QF and 202 MW of MUNI generation as well as 8 MW of deficiency) as minimum capacity necessary for reliable load serving capability within this sub-area.

## Effectiveness factors:

The following table has units within the Bay Area that are at least 5% effective.

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 35863   | CATALYST | 1      | 20           |
| 36856   | CCCA100  | 1      | 6            |
| 36854   | Cogen    | 1      | 6            |
| 36854   | Cogen    | 2      | 6            |
| 36863   | DVRaGT1  | 1      | 6            |
| 36864   | DVRbGT2  | 1      | 6            |
| 36865   | DVRaST3  | 1      | 6            |
| 35860   | OLS-AGNE | 1      | 5            |
| 36858   | Gia100   | 1      | 5            |
| 36859   | Gia200   | 2      | 5            |
| 35854   | LECEFGT1 | 1      | 5            |
| 35855   | LECEFGT2 | 2      | 5            |
| 35856   | LECEFGT3 | 3      | 5            |
| 35857   | LECEFGT4 | 4      | 5            |
|         |          |        |              |

## Pittsburg Sub-area

This sub-area is eliminated after the following projects are operational: Tesla-Pittsburg 230 kV Reconductoring, Moraga 230/115 kV Banks Replacement, Contra Costa-Moraga 230 kV Reconductoring and the Vaca Dixon-Lakeville 230 kV Reconductoring.

## Contra Costa Sub-area

The most critical contingency is an outage of Kelso-Tesla 230 kV with Gateway out of service. The area limitation is thermal overloading of the Delta Switching Yard-Tesla 230 kV line. This limiting contingency establishes a LCR of 1409 MW in 2018 (includes 51 MW of QF, 357 MW of wind and 234 MW of MUNI pumps) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

The following table has units within the Bay Area that are at least 10% effective.

| <u> </u> | <u> </u> | <b>a</b> 15 |              |
|----------|----------|-------------|--------------|
|          | Gen Name |             | Eff ⊦ctr (%) |
| 33175    | ALTAMONT | 1           | 83           |
| 38760    | DELTA E  | 10          | 71           |
| 38760    | DELTA E  | 11          | 71           |
| 38765    | DELTA D  | 8           | 71           |
| 38765    | DELTA D  | 9           | 71           |
| 38770    | DELTA C  | 6           | 71           |
| 38770    | DELTA C  | 7           | 71           |
| 38815    | DELTA B  | 4           | 71           |
| 38815    | DELTA B  | 5           | 71           |
| 38820    | DELTA A  | 3           | 71           |
| 33170    | WINDMSTR | 1           | 68           |
| 33118    | GATEWAY1 | 1           | 23           |
| 33119    | GATEWAY2 | 1           | 23           |
| 33120    | GATEWAY3 | 1           | 23           |
| 33116    | C.COS 6  | 1           | 23           |
| 33117    | C.COS 7  | 1           | 23           |
| 33133    | GWF #3   | 1           | 23           |
| 33134    | GWF #4   | 1           | 23           |
| 33178    | RVEC_GEN | 1           | 23           |
| 33131    | GWF #1   | 1           | 22           |
| 32179    | T222     | 1           | 18           |
| 32188    | P0611G   | 1           | 18           |
| 32190    | Q039     | 1           | 18           |
| 32186    | P0609    | 1           | 18           |
|          |          |             |              |

| 32171 | HIGHWND3 | 1 | 18 |
|-------|----------|---|----|
| 32177 | Q0024    | 1 | 18 |
| 32168 | ENXCO    | 2 | 18 |
| 32169 | SOLANOWP | 1 | 18 |
| 32172 | HIGHWNDS | 1 | 18 |
| 32176 | SHILOH   | 1 | 18 |
| 33838 | USWP_#3  | 1 | 18 |
| 32173 | LAMBGT1  | 1 | 14 |
| 32174 | GOOSEHGT | 2 | 14 |
| 32175 | CREEDGT1 | 3 | 14 |
| 35312 | SEAWESTF | 1 | 11 |
| 35316 | ZOND SYS | 1 | 11 |
| 35320 | USW FRIC | 1 | 11 |

## Bay Area overall

The most critical double contingency is the loss of the Tesla-Metcalf 500 kV Line and Tesla-Newark 230kV Line #1. The area limitation is the thermal limit of the Tesla-Delta Switching Yard 230 kV line. This limiting contingency establishes a local capacity need of 4478 MW in 2018 (includes 578 MW of QF, 359 MW of wind and 489 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of the Tesla-Metcalf 500 kV with Delta Energy Center out of service. The area limitation is reactive margin. This limiting contingency establishes a local capacity need of 3860 MW in 2018 (includes 578 MW of QF, 359 MW of wind and 489 MW of MUNI generation).

#### **Effectiveness factors:**

For most helpful procurement information please read procedure M-2210Z effectiveness factors at: <u>http://www.caiso.com/Documents/2210Z.pdf</u>

#### Changes compared to last year's results:

Compared with 2017 the load forecast went up by 439 MW and the LCR has increased by 205 MW.

## Bay Area Overall Requirements:

|                      | Wind | QF/Selfgen | Muni | Market | Max. Qualifying |
|----------------------|------|------------|------|--------|-----------------|
|                      | (MW) | (MW)       | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 359  | 578        | 489  | 6932   | 8358            |

| 2018                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|---------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>13</sup>   | 3860                                        | 0                  | 3860                    |
| Category C (Multiple) <sup>14</sup> | 4478                                        | 8                  | 4486                    |

## 6. Greater Fresno Area

## Area Definition

The transmission facilities coming into the Greater Fresno area are:

- 1) Gates-McCall 230 kV
- 2) Gates-Gregg 230 kV
- 3) Gates #5 230/70 kV Transformer Bank
- 4) Mercy Spring 230 /70 Bank # 1
- 5) Los Banos #3 230/70 Transformer Bank
- 6) Los Banos #4 230/70 Transformer Bank
- 7) Warnerville-Wilson 230kV
- 8) Melones-North Merced 230 kV line
- 9) Panoche-Kearney 230 kV
- 10) Panoche-Helm 230 kV
- 11) Panoche #1 230/115 kV Transformer Bank
- 12) Panoche #2 230/115 kV Transformer Bank
- 13) Corcoran-Smyrna 115kV
- 14) Coalinga #1-San Miguel 70 kV

The substations that delineate the Greater Fresno area are:

- 1) Gates is out Henrietta is in
- 2) Gates is out Henrietta is in
- 3) Gates 230 is out Gates 70 is in
- 4) Mercy Spring 230 is out Mercy Spring 70 is in
- 5) Los Banos 230 is out Los Banos 70 is in
- 6) Los Banos 230 is out Los Banos 70 is in

<sup>&</sup>lt;sup>13</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>14</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 7) Warnerville is out Wilson is in
- 8) Melones is out North Merced is in
- 9) Panoche is out Kearney is in
- 10) Panoche is out Helm is in
- 11) Panoche 230 is out Panoche 115 is in
- 12) Panoche 230 is out Panoche 115 is in
- 13) Corcoran is in Smyrna is out
- 14) Coalinga is in San Miguel is out

Total 2018 busload within the defined area: 3310 MW with 91 MW of losses resulting in total load + losses of 3401 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC   |    | LCR SUB-AREA<br>NAME | NQC Comments           | CAISO Tag  |
|--------------------------|-------|----------|------|-------|----|----------------------|------------------------|------------|
| AGRICO_6_PL3N5           | 34608 | AGRICO   | 13.8 | 20.00 | 3  | Wilson, Herndon      |                        | Market     |
| AGRICO_7_UNIT            | 34608 | AGRICO   | 13.8 | 43.05 | 2  | Wilson, Herndon      |                        | Market     |
| AGRICO_7_UNIT            | 34608 | AGRICO   | 13.8 | 7.45  | 4  | Wilson, Herndon      |                        | Market     |
| AVENAL_6_AVPARK          | 34265 | AVENAL P | 12   | 0.00  | 1  | Wilson               | Energy Only            | Market     |
| AVENAL_6_SANDDG          | 34263 | SANDDRAG | 12   | 0.00  | 1  | Wilson               | Energy Only            | Market     |
| AVENAL_6_SUNCTY          | 34257 | SANCTY D | 12   | 0.00  | 1  | Wilson               | Energy Only            | Market     |
| BALCHS_7_UNIT 1          | 34624 | BALCH    | 13.2 | 33.00 | 1  | Wilson, Herndon      | Aug NQC                | Market     |
| BALCHS_7_UNIT 2          | 34612 | BLCH     | 13.8 | 52.50 | 1  | Wilson, Herndon      | Aug NQC                | Market     |
| BALCHS_7_UNIT 3          | 34614 | BLCH     | 13.8 | 52.50 | 1  | Wilson, Herndon      | Aug NQC                | Market     |
| BORDEN_2_QF              | 34253 | BORDEN D | 12.5 | 1.27  | QF | Wilson               | Aug NQC                | QF/Selfgen |
| BULLRD_7_SAGNES          | 34213 | BULLD 12 | 12.5 | 0.00  | 1  | Wilson               | Aug NQC                | QF/Selfgen |
| CAPMAD_1_UNIT 1          | 34179 | MADERA_G | 13.8 | 17.00 | 1  | Wilson               |                        | Market     |
| CHEVCO_6_UNIT 1          | 34652 | CHV.COAL | 9.11 | 4.16  | 1  | Wilson               | Aug NQC                | QF/Selfgen |
| CHEVCO_6_UNIT 2          | 34652 | CHV.COAL | 9.11 | 1.40  |    | Wilson               | Aug NQC                | QF/Selfgen |
|                          |       | CHWCHLA2 | 13.8 | 4.15  |    | Wilson, Herndon      | Aug NQC                | Market     |
| CHWCHL_1_UNIT            |       | CHOWCOGN | 13.8 | 48.00 |    | Wilson, Herndon      |                        | Market     |
| COLGA1_6_SHELLW          | 34654 | COLNGAGN | 9.11 | 35.70 | 1  | Wilson               | Aug NQC                | QF/Selfgen |
| CRESSY_1_PARKER          | 34140 | CRESSEY  | 115  | 1.53  |    | Wilson               | Not modeled Aug<br>NQC | MUNI       |
| CRNEVL_6_CRNVA           | 34634 | CRANEVLY | 12   | 0.71  | 1  | Wilson               | Aug NQC                | Market     |
| CRNEVL_6_SJQN 2          | 34631 | SJ2GEN   | 9.11 | 3.20  | 1  | Wilson               | Aug NQC                | Market     |
| CRNEVL_6_SJQN 3          | 34633 | SJ3GEN   | 9.11 | 4.20  | 1  | Wilson               | Aug NQC                | Market     |
| DINUBA_6_UNIT            | 34648 | DINUBA E | 13.8 | 9.87  | 1  | Wilson, Herndon      |                        | Market     |
| ELNIDP_6_BIOMAS          | 34330 | ELNIDO   | 13.8 | 2.67  | 1  | Wilson               | Aug NQC                | Market     |
| EXCHEC_7_UNIT 1          | 34306 | EXCHQUER | 13.8 | 61.77 | 1  | Wilson               | Aug NQC                | MUNI       |
| FRIANT_6_UNITS           | 34636 | FRIANTDM | 6.6  | 13.18 | 2  | Wilson               | Aug NQC                | QF/Selfgen |
| FRIANT_6_UNITS           | 34636 | FRIANTDM | 6.6  | 7.04  | 3  | Wilson               | Aug NQC                | QF/Selfgen |
| FRIANT_6_UNITS           | 34636 | FRIANTDM | 6.6  | 1.86  | 4  | Wilson               | Aug NQC                | QF/Selfgen |
| GATES_6_PL1X2            | 34553 | WHD_GAT2 | 13.8 | 46.00 | 1  | Wilson               | NQC List has 0 MW      | Market     |
| GWFPWR_1_UNITS           | 34431 | GWF_HEP1 | 13.8 | 42.20 | 1  | Wilson, Herndon      |                        | Market     |
| GWFPWR_1_UNITS           | 34433 | GWF_HEP2 | 13.8 | 42.20 | 1  | Wilson, Herndon      |                        | Market     |
| HAASPH_7_PL1X2           | 34610 | HAAS     | 13.8 | 68.15 | 1  | Wilson, Herndon      | Aug NQC                | Market     |
| HAASPH_7_PL1X2           | 34610 | HAAS     | 13.8 | 68.15 | 2  | Wilson, Herndon      | Aug NQC                | Market     |

Total units and qualifying capacity available in this area:

| HELMPG 7 UNIT 1 | 34600 | HELMS    | 18   | 404.00 | 1 | Wilson            | Aug NQC             | Market     |
|-----------------|-------|----------|------|--------|---|-------------------|---------------------|------------|
|                 |       | HELMS    | 18   | 404.00 | 2 | Wilson            | Aug NQC             | Market     |
|                 |       | HELMS    | 18   | 404.00 | 3 | Wilson            | Aug NQC             | Market     |
|                 | 34539 | GWF GT1  | 13.8 | 45.33  | 1 | Wilson, Henrietta | U                   | Market     |
|                 | 34541 | GWF_GT2  | 13.8 | 45.23  | 1 | Wilson, Henrietta |                     | Market     |
| INTTRB_6_UNIT   | 34342 | INT.TURB | 9.11 | 2.84   | 1 | Wilson            | Aug NQC             | QF/Selfgen |
| JRWOOD_1_UNIT 1 | 34332 | JRWCOGEN | 9.11 | 0.00   | 1 | Wilson            | Aug NQC             | QF/Selfgen |
| KERKH1_7_UNIT 1 | 34344 | KERCKHOF | 6.6  | 13.00  | 1 | Wilson, Herndon   | Aug NQC             | Market     |
| KERKH1_7_UNIT 2 | 34344 | KERCKHOF | 6.6  | 8.50   | 2 | Wilson, Herndon   | Aug NQC             | Market     |
| KERKH1_7_UNIT 3 | 34344 | KERCKHOF | 6.6  | 12.80  | 3 | Wilson, Herndon   | Aug NQC             | Market     |
| KERKH2_7_UNIT 1 | 34308 | KERCKHOF | 13.8 | 153.90 | 1 | Wilson, Herndon   | Aug NQC             | Market     |
| KINGCO_1_KINGBR | 34642 | KINGSBUR | 9.11 | 25.35  | 1 | Wilson, Herndon   | Aug NQC             | QF/Selfgen |
| KINGRV 7 UNIT 1 | 34616 | KINGSRIV | 13.8 | 51.20  | 1 | Wilson, Herndon   | Aug NQC             | Market     |
| MALAGA 1 PL1X2  | 34671 | KRCDPCT1 | 13.8 | 48.00  | 1 | Wilson, Herndon   |                     | Market     |
|                 |       | KRCDPCT2 | 13.8 | 48.00  | 1 | Wilson, Herndon   |                     | Market     |
|                 |       | MCCALL 4 | 12.5 | 0.54   |   | Wilson, Herndon   | Aug NQC             | QF/Selfgen |
|                 |       | MCSWAIN  | 9.11 | 6.53   | 1 | Wilson            | Aug NQC             | MUNI       |
|                 |       | BIO PWR  | 9.11 | 20.87  |   | Wilson            | Aug NQC             | QF/Selfgen |
|                 |       | MERCEDFL | 9.11 | 2.74   | 1 | Wilson            | Aug NQC             | Market     |
|                 | 38720 | PINEFLAT | 13.8 | 24.73  | 1 | Wilson, Herndon   | Aug NQC             | MUNI       |
| PINFLT_7_UNITS  | 38720 | PINEFLAT | 13.8 | 24.73  | 2 | Wilson, Herndon   | Aug NQC             | MUNI       |
|                 | 38720 | PINEFLAT | 13.8 | 24.74  | 3 | Wilson, Herndon   | Aug NQC             | MUNI       |
|                 | 34328 | STARGT1  | 13.8 | 55.58  | 1 | Wilson            | / dg Ngo            | Market     |
|                 |       | STARGT2  | 13.8 | 55.58  | 1 | Wilson            |                     | Market     |
|                 |       | WHD PAN2 | 13.8 | 49.97  | 1 | Wilson, Herndon   |                     | Market     |
|                 |       | DG PAN1  | 13.8 | 45.00  | 1 | Wilson            |                     | Market     |
|                 | 34354 | SCHINDLR | 115  | 0.00   | 1 | Wilson            | Energy Only         | Market     |
| SCHNDR 1 WSTSDE |       | SCHINDLR | 115  | 0.00   |   | Wilson            | Energy Only         | Market     |
| SGREGY 6 SANGER |       | SANGERCO | 9.11 | 28.05  | 1 | Wilson            | Aug NQC             | QF/Selfgen |
| STOREY 7 MDRCHW |       | STOREY D | 12.5 | 1.10   | 1 | Wilson            | Aug NQC             | QF/Selfgen |
|                 | 34564 | STROUD   | 70   | 0.00   |   | Wilson            | Energy Only         | Market     |
|                 | 34640 | ULTR.PWR | 9.11 | 20.72  | 1 | Wilson, Herndon   | Aug NQC             | QF/Selfgen |
|                 | 34658 | WISHON   | 2.3  | 4.51   | 1 | Wilson            | Aug NQC             | Market     |
|                 |       | WISHON   | 2.3  | 4.51   | 2 | Wilson            | Aug NQC             | Market     |
|                 | 34658 | WISHON   | 2.3  | 4.51   | 3 | Wilson            | Aug NQC             | Market     |
|                 | 34658 | WISHON   | 2.3  | 4.51   | 4 | Wilson            | Aug NQC             | Market     |
|                 |       | WISHON   | 2.3  | 0.36   | 5 | Wilson            | Aug NQC             | Market     |
| WRGHTP 7 AMENGY |       |          | 12.5 | 0.48   |   | Wilson            | Aug NQC             | QF/Selfgen |
|                 |       | FRESNOWW | 12.5 | 4.00   | 1 | Wilson            | No NQC - hist. data |            |
|                 |       | FRESNOWW | 12.5 | 4.00   | 2 | Wilson            | No NQC - hist. data | ÷          |
|                 |       | FRESNOWW | 12.5 | 1.00   | 3 | Wilson            | No NQC - hist. data | -          |
|                 |       | ONEILPMP | 9.11 | 0.50   | 1 | Wilson            | No NQC - hist. data | MUNI       |
|                 | 34650 | GWF-PWR. | 9.11 | 0.00   | 1 | Wilson, Henrietta | Retired             | QF/Selfgen |
|                 |       | CALRENEW | 12.5 | 0.00   | 1 | Wilson            | Energy Only         | Market     |
|                 |       | JQBSWLT  | 12.5 | 0.00   |   | Wilson            | Energy Only         | Market     |
|                 |       | RPSP1005 | 0.48 | 20.00  | 1 | Wilson, Henrietta | No NQC - Pmax       | Market     |
| New Unit        | 34674 | RPSP1006 | 0.48 | 20.00  | 1 | Wilson, Henrietta | No NQC - Pmax       | Market     |
| New Unit        | 34675 | RPSP1007 | 0.48 | 20.00  | 1 | Wilson, Henrietta | No NQC - Pmax       | Market     |
| New Unit        | 34696 | RPSP1004 | 21   | 20.00  | 1 | Wilson, Herndon   | No NQC - Pmax       | Market     |

Major new projects modeled:

- 1. New North Merced 230/115 kV substation
- 2. New Mercy Spring 230/70 kV substation
- 3. Le Grand-Chowchilla 115 kV reconductoring

# Critical Contingency Analysis Summary

#### Henrietta Sub-area

This sub-area has been eliminated since Henrietta 230/70 bank # 2 which was identified as the limiting element in the previous LCR analysis has been taken out of service and is available as spare for the outage of the 230/70 bank # 4.

## Herndon Sub-area

The most critical contingency for the Herndon sub-area is the loss of the Herndon-Woodward 115 kV line overlapped with the loss of Barton-Herndon 115 kV line, which would thermally overload the Manchester - Herndon 115 kV line. This limiting contingency establishes a local capacity need of 370 MW (includes 42 MW of QF and 83 MW of Muni generation) in 2018 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

## Effectiveness factors:

The following table has units within Fresno area that are at least 5% effective.

| Gen No | Gen Name | ID | DFAX |
|--------|----------|----|------|
| 34624  | BALCH 1  | 1  | 20%  |
| 34646  | SANGERCO | 1  | 19%  |
| 34616  | KINGSRIV | 1  | 19%  |
| 34648  | DINUBA E | 1  | 18%  |
| 34671  | KRCDPCT1 | 1  | 18%  |
| 34672  | KRCDPCT2 | 1  | 18%  |
| 34640  | ULTR.PWR | 1  | 18%  |
| 34621  | MCCALL3T | 1  | 16%  |
| 34219  | MCCALL 4 | QF | 16%  |
| 34618  | MCCALL1T | 1  | 16%  |
| 34696  | RPSP1004 | 1  | 14%  |
| 34642  | KINGSBUR | 1  | 14%  |
| 34614  | BLCH 2-3 | 1  | 13%  |
| 34612  | BLCH 2-2 | 1  | 13%  |
| 38720  | PINE FLT | 1  | 13%  |
| 38720  | PINE FLT | 2  | 13%  |

| 34610 | HAAS     | 1 | 13% |
|-------|----------|---|-----|
| 34610 | HAAS     | 2 | 13% |
| 34344 | KERCKHOF | 1 | 10% |
| 34344 | KERCKHOF | 2 | 10% |
| 34344 | KERCKHOF | 3 | 10% |
| 34308 | KERCKHOF | 1 | 10% |
| 34433 | GWF_HEP2 | 1 | 7%  |
| 34431 | GWF_HEP1 | 1 | 7%  |
| 34608 | AGRICO   | 2 | 6%  |
| 34608 | AGRICO   | 3 | 6%  |
| 34608 | AGRICO   | 4 | 6%  |
| 34334 | BIO PWR  | 1 | 5%  |
| 34339 | CALRENEW | 1 | 5%  |

#### Wilson Sub-area

The most critical contingency for the Wilson sub-area is the loss of the Melones - North Merced 230 kV line overlapped with the loss of one Helms Unit, which would thermally overload the Warnerville - Wilson 230 kV line. This limiting contingency establishes a local capacity need of 2110 MW in 2018 (includes 174 MW of QF and 144 MW of Muni generation) as the generation capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

The following table has units within Fresno that are at least 5% effective.

| Gen No | Gen Name | ID | DFAX |
|--------|----------|----|------|
| 34332  | JRWCOGEN | 1  | 40%  |
| 34330  | ELNIDO   | 1  | 37%  |
| 34322  | MERCEDFL | 1  | 34%  |
| 34320  | MCSWAIN  | 1  | 33%  |
| 34209  | STOREY D | 1  | 33%  |
| 34306  | EXCHQUER | 1  | 32%  |
| 34305  | CHWCHLA2 | 1  | 30%  |
| 34301  | CHOWCOGN | 1  | 30%  |
| 34631  | SJ2GEN   | 1  | 27%  |
| 34658  | WISHON   | 1  | 27%  |
| 34658  | WISHON   | 2  | 27%  |
| 34658  | WISHON   | 3  | 27%  |
| 34658  | WISHON   | 4  | 27%  |
| 34658  | WISHON   | SJ | 27%  |
| 34633  | SJ3GEN   | 1  | 27%  |
| 34634  | CRANEVLY | 1  | 27%  |
| 34253  | BORDEN D | QF | 26%  |
| 34636  | FRIANTDM | 2  | 26%  |
| 34636  | FRIANTDM | 3  | 26%  |
|        |          |    |      |

| 34636          | FRIANTDM | 4      | 26%                |
|----------------|----------|--------|--------------------|
| 34213          | BULLD 12 | 1      | 24%                |
| 34600          | HELMS 1  | 1      | 23%                |
| 34602          | HELMS 2  | 1      | 23%                |
| 34604          | HELMS 3  | 1      | 23%                |
| 34632          | HERNDN2T | 1      | 22%                |
| 34630          | HERNDN1T | 1      | 22%                |
| 34179          | MADERA_G | 1      | 21%                |
| 34485          | FRESNOWW | 1      | 21%                |
| 34485          | FRESNOWW | 2      | 21%                |
| 34485          | FRESNOWW | 3      | 21%                |
| 34344          | KERCKHOF | 1      | 21%                |
| 34344          | KERCKHOF | 2      | 21%                |
| 34344          | KERCKHOF | 3      | 21%                |
| 34308          | KERCKHOF | 1      | 21%                |
| 34646          | SANGERCO | 1      | 18%                |
| 34648          | DINUBA E | 1      | 17%                |
| 34616          | KINGSRIV | 1      | 17%                |
| 34624          | BALCH 1  | 1      | 17%                |
| 34640          | ULTR.PWR | 1      | 17%                |
| 34671          | KRCDPCT1 | 1      | 17%                |
| 34672          | KRCDPCT2 | 1      | 17%                |
| 34219          | MCCALL 4 | QF     | 16%                |
| 34621          | MCCALL3T | 1      | 16%                |
| 34696          | RPSP1004 | 1      | 16%                |
| 34618          | MCCALL1T | 1      | 10 <i>%</i><br>16% |
| 34642          | KINGSBUR | 1      | 16%                |
| 34642<br>34610 | HAAS     | 1      | 15%                |
|                |          |        |                    |
| 34610          | HAAS     | 2<br>1 | 15%                |
| 34614          | BLCH 2-3 |        | 15%                |
| 34612          | BLCH 2-2 | 1      | 14%                |
| 38720          | PINE FLT | 1      | 14%                |
| 38720          | PINE FLT | 2      | 14%                |
| 38720          | PINE FLT | 3      | 14%                |
| 34433          | GWF_HEP2 | 1      | 14%                |
| 34431          | GWF_HEP1 | 1      | 14%                |
| 34608          | AGRICO   | 2      | 12%                |
| 34608          | AGRICO   | 3      | 12%                |
| 34608          | AGRICO   | 4      | 12%                |
| 34675          | RPSP1007 | 1      | 12%                |
| 34539          | GWF_GT1  | 1      | 12%                |
| 34541          | GWF_GT2  | 1      | 12%                |
| 34674          | RPSP1006 | 1      | 12%                |
| 34673          | RPSP1005 | 1      | 12%                |
| 34650          | GWF-PWR. | 1      | 11%                |
| 34334          | BIO PWR  | 1      | 10%                |
| 34339          | CALRENEW | 1      | 10%                |
| 34328          | STAR_GT1 | 1      | 10%                |
| 34329          | STAR_GT2 | 2      | 10%                |
| 34142          | WHD_PAN2 | 1      | 10%                |
| 34186          | DG_PAN1  | 1      | 10%                |
| 34263          | SANDDRAG | 1      | 8%                 |
|                |          |        |                    |

| 34257 | SUNCTY D | 1  | 8% |
|-------|----------|----|----|
| 34652 | CHV.COAL | 1  | 8% |
| 34652 | CHV.COAL | 2  | 8% |
| 34265 | AVENAL P | 1  | 8% |
| 34553 | WHD_GAT2 | 1  | 7% |
| 34654 | COLNGAGN | 1  | 7% |
| 34207 | WRIGHT D | QF | 6% |
| 34342 | INT.TURB | 1  | 5% |
| 34316 | ONEILPMP | 1  | 5% |

## Additional helpful effectiveness factors for Fresno area:

For most helpful procurement information please read procedure M-2210Z effectiveness factors at: <u>http://www.caiso.com/Documents/2210Z.pdf</u>

## Changes compared to last year's results:

Overall the load forecast went up by 37 MW or about 1%. The LCR need has stayed the same since Le Grand-Chowchilla 115 kV reconductoring decreases the LCR need.

## Fresno Area Overall Requirements:

|                      | QF/Selfgen | Muni | Market | Max. Qualifying |
|----------------------|------------|------|--------|-----------------|
|                      | (MW)       | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 174        | 144  | 2510   | 2828            |

| 2018                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|---------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>15</sup>   | 2110                                        | 0                  | 2110                    |
| Category C (Multiple) <sup>16</sup> | 2110                                        | 0                  | 2110                    |

# 7. Kern Area

## Area Definition

The transmission facilities coming into the Kern PP sub-area are:

<sup>&</sup>lt;sup>15</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>16</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 1) Wheeler Ridge-Lamont 115 kV line
- 2) Kern PP 230/115 kV Bank # 3
- 3) Kern PP 230/115 kV Bank # 4
- 4) Kern PP 230/115 kV Bank # 5
- 5) Midway 230/115 Bank # 1
- 6) Midway 230/115 Bank # 2
- 7) Midway 230/115 Bank #3
- 8) Temblor San Luis Obispo 115 kV line

The substations that delineate the Kern-PP sub-area are:

- 1) Wheeler Ridge is out Lamont is in
- 2) Kern PP 230 is out Kern PP 115 kV is in
- 3) Kern PP 230 is out Kern PP 115 kV is in
- 4) Kern PP 230 is out Kern PP 115 kV is in
- 5) Midway 230 is out Midway 115 is in
- 6) Midway 230 is out Midway 115 is in
- 7) Midway 230 is out Midway 115 is in
- 8) Temblor is in San Luis Obispo is out

Total 2018 busload within the defined area: 1310 MW with 14 MW of losses resulting in total load + losses of 1324 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC   | UNIT<br>ID | LCR SUB-<br>AREA<br>NAME | NQC Comments | CAISO Tag  |
|--------------------------|-------|----------|------|-------|------------|--------------------------|--------------|------------|
| ALPSLR_1_SPSSLR          | 35001 | RPSP1018 | 21   | 44.64 | 1          |                          | Aug NQC      | Market     |
| BDGRCK_1_UNITS           | 35029 | BADGERCK | 9.11 | 45.21 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| BEARMT_1_UNIT            | 35066 | PSE-BEAR | 9.11 | 45.64 | 1          | Kern PP,<br>West Park    | Aug NQC      | QF/Selfgen |
| CHALK_1_UNIT             | 35038 | CHLKCLF+ | 9.11 | 44.58 | 1          |                          | Aug NQC      | QF/Selfgen |
| CHEVCD_6_UNIT            | 35052 | CHEV.USA | 9.11 | 2.36  | 1          |                          | Aug NQC      | QF/Selfgen |
| CHEVCY_1_UNIT            | 35032 | CHV-CYMR | 9.11 | 6.66  | 1          |                          | Aug NQC      | QF/Selfgen |
| DEXZEL_1_UNIT            | 35024 | DEXEL +  | 9.11 | 28.25 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| DISCOV_1_CHEVRN          | 35062 | DISCOVRY | 9.11 | 1.77  | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| DOUBLC_1_UNITS           | 35023 | DOUBLE C | 9.11 | 47.00 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| FELLOW_7_QFUNTS          | 34778 | FELLOWS  | 21   | 1.33  | QF         |                          | Aug NQC      | QF/Selfgen |
| FRITO_1_LAY              | 35048 | FRITOLAY | 9.11 | 0.08  | 1          |                          | Aug NQC      | QF/Selfgen |
| KERNFT_1_UNITS           | 35026 | KERNFRNT | 9.11 | 47.00 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| KERNRG_1_UNITS           | 35040 | KERNRDGE | 9.11 | 0.61  | 1          |                          | Aug NQC      | QF/Selfgen |
| KERNRG_1_UNITS           | 35040 | KERNRDGE | 9.11 | 0.62  | 2          |                          | Aug NQC      | QF/Selfgen |
| KRNOIL_7_TEXEXP          |       |          |      | 0.00  |            |                          | Energy Only  | QF/Selfgen |
| LIVOAK_1_UNIT 1          | 35058 | PSE-LVOK | 9.11 | 44.40 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| MIDSET_1_UNIT 1          | 35044 | TX MIDST | 9.11 | 33.14 | 1          |                          | Aug NQC      | QF/Selfgen |
| MIDWAY_1_QF              | 34215 | MIDWY D7 | 12.5 | 0.03  | QF         |                          | Aug NQC      | QF/Selfgen |
| MKTRCK_1_UNIT 1          | 35060 | PSEMCKIT | 9.11 | 40.84 | 1          |                          | Aug NQC      | QF/Selfgen |
| MTNPOS_1_UNIT            | 35036 | MT POSO  | 9.11 | 29.68 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |
| OILDAL_1_UNIT 1          | 35028 | OILDALE  | 9.11 | 39.36 | 1          | Kern PP                  | Aug NQC      | QF/Selfgen |

Total units and qualifying capacity available in this Kern PP sub-area:

| SIERRA_1_UNITS  | 35027 | HISIERRA | 9.11 | 47.00 | 1  | Kern PP | Aug NQC             | QF/Selfgen |
|-----------------|-------|----------|------|-------|----|---------|---------------------|------------|
| TANHIL_6_SOLART | 35050 | SLR-TANN | 9.11 | 10.35 | 1  |         | Aug NQC             | QF/Selfgen |
| TEMBLR_7_WELLPT | 34201 | TEMBLORD | 12.5 | 0.38  | WP |         | Aug NQC             | QF/Selfgen |
| TXMCKT_6_UNIT   | 34783 | TEXCO_NM | 9.11 | 1.87  | 1  |         | Aug NQC             | QF/Selfgen |
| TXMCKT_6_UNIT   | 34783 | TEXCO_NM | 9.11 | 1.87  | 2  |         | Aug NQC             | QF/Selfgen |
| TXMCKT_6_UNIT   |       |          |      | 3.74  |    |         | Not modeled Aug NQC | QF/Selfgen |
| ULTOGL_1_POSO   | 35035 | ULTR PWR | 9.11 | 34.17 | 1  | Kern PP | Aug NQC             | QF/Selfgen |
| UNVRSY_1_UNIT 1 | 35037 | UNIVRSTY | 9.11 | 34.19 | 1  |         | Aug NQC             | QF/Selfgen |
| VEDDER_1_SEKERN | 35046 | SEKR     | 9.11 | 11.82 | 1  | Kern PP | Aug NQC             | QF/Selfgen |
| MIDSUN_1_PL1X2  | 35034 | MIDSUN + | 9.11 | 0.00  | 1  |         | Retired             | Market     |
| NA              | 35056 | TX-LOSTH | 4.16 | 8.80  | 1  |         | No NQC - hist. data | QF/Selfgen |
| New Unit        | 35000 | RPSP1003 | 21   | 0.00  | 1  |         | Energy Only         | Market     |
| New Unit        | 35012 | RPSP1019 | 21   | 0.00  | 1  |         | Energy Only         | Market     |
| New Unit        | 35013 | RPSP1020 | 21   | 0.00  | 1  |         | Energy Only         | Market     |
| New Unit        | 35014 | RPSP1021 | 21   | 20.00 | 1  |         | No NQC - Pmax       | Market     |

#### Major new projects modeled:

- 1. Transfer Navy 35 load and self-gen to the Midway-Elk Hills 230 kV lines.
- 2. Kern PP 230kV Reinforcement Project upgrades Kern PP #4 230/115kV

transformer terminal equipment to utilize full rating of transformer.

## Critical Contingency Analysis Summary

#### West Park Sub-area

The most critical contingency is the loss of common mode Kern - West Park # 1 & #2 115 kV lines, resulting in the overload of the 6/42 To Magunden section of Kern – Magunden - Witco 115 kV line. This limitation establishes a LCR of 76 MW (includes 46 MW of QF generation and 30 MW of deficiency) in 2018 as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this sub-area are needed therefore no effectiveness factor is required.

## Kern PP Sub-area

The most critical contingency is the outage of Smyrna-Semitropic-Midway 115 kV with Ultra Power Poso unit out of service, which could thermally overload the Midway-Semitropic 115 kV. This limiting contingency establishes a LCR of 447 MW in 2018

(includes 421 MW of effective QF generation as 26 MW deficiency) as the minimum generation capacity necessary for reliable load serving capability within this sub-area.

## Effectiveness factors:

All units within this sub-area are needed therefore no effectiveness factor is required.

## Changes compared to last year's results:

Overall the load forecast went up by 17 MW or about 1%. The LCR requirement has gone up by 43 MW mostly due to new limiting contingency for the Kern PP sub-area.

## Kern Area Overall Requirements:

|                      | QF/Selfgen | Market | Max. Qualifying |
|----------------------|------------|--------|-----------------|
|                      | (MW)       | (MW)   | Capacity (MW)   |
| Available generation | 613        | 64     | 677             |

| 2018                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |
|-------------------------------------|---------------------------------------------|--------------------|-------------------------|
| Category B (Single) <sup>17</sup>   | 421                                         | 26                 | 447                     |
| Category C (Multiple) <sup>18</sup> | 421                                         | 56                 | 477                     |

# 8. LA Basin Area

## Area Definition

The transmission tie lines into the LA Basin Area are:

- 1) San Onofre San Luis Rey #1, #2, and #3 230 kV Lines
- 2) San Onofre Talega #2 230 kV Lines
- 3) San Onofre Capistrano #1 230 kV Lines
- 4) Lugo Mira Loma #2 & #3 500 kV Lines
- 5) Lugo Rancho Vista #1 500 kV Line
- 6) Sylmar Eagle Rock 230 kV Line
- 7) Sylmar Gould 230 kV Line

<sup>&</sup>lt;sup>17</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>18</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 8) Vincent Mira Loma #1 500 kV Line
- 9) Vincent Mesa Cal #1 230 kV Line
- 10) Vincent Rio Hondo #1 & #2 230 kV Lines
- 11) Devers Red Bluff 500 kV #1 and #2 Lines
- 12) Mirage Coachelv # 1 230 kV Line
- 13) Mirage Ramon # 1 230 kV Line
- 14) Mirage Julian Hinds 230 kV Line

The substations that delineate the LA Basin Area are:

- 1) San Onofre is in San Luis Rey is out
- 2) San Onofre is in Talega is out
- 3) San Onofre is in Capistrano is out
- 4) Mira Loma is in Lugo is out
- 5) Rancho Vista is in Lugo is out
- 6) Eagle Rock is in Sylmar is out
- 7) Gould is in Sylmar is out
- 8) Mira Loma is in Vincent is out
- 9) Mesa Cal is in Vincent is out
- 10) Rio Hondo is in Vincent is out
- 11) Devers is in Red Bluff is out
- 12) Mirage is in Coachelv is out
- 13) Mirage is in Ramon is out
- 14) Mirage is in Julian Hinds is out

Total 2018 busload within the defined area is 20,560 MW, with 124 MW of losses and

21 MW pumps resulting in total load + losses + pumps of 20,705 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME   | kV   | NQC    | - | LCR SUB-AREA<br>NAME | NQC Comments | CAISO Tag  |
|--------------------------|-------|------------|------|--------|---|----------------------|--------------|------------|
| ALAMIT_7_UNIT 1          | 24001 | ALAMT1 G   | 18   | 174.56 | 1 | Western              |              | Market     |
| ALAMIT_7_UNIT 2          | 24002 | ALAMT2 G   | 18   | 175.00 | 2 | Western              |              | Market     |
| ALAMIT_7_UNIT 3          | 24003 | ALAMT3 G   | 18   | 332.18 | 3 | Western              |              | Market     |
| ALAMIT_7_UNIT 4          | 24004 | ALAMT4 G   | 18   | 335.67 | 4 | Western              |              | Market     |
| ALAMIT_7_UNIT 5          | 24005 | ALAMT5 G   | 20   | 497.97 | 5 | Western              |              | Market     |
| ALAMIT_7_UNIT 6          | 24161 | ALAMT6 G   | 20   | 495.00 | 6 | Western              |              | Market     |
| ANAHM_2_CANYN1           | 25211 | CanyonGT 1 | 13.8 | 49.40  | 1 | Western              |              | MUNI       |
| ANAHM_2_CANYN2           | 25212 | CanyonGT 2 | 13.8 | 48.00  | 2 | Western              |              | MUNI       |
| ANAHM_2_CANYN3           | 25213 | CanyonGT 3 | 13.8 | 48.00  | 3 | Western              |              | MUNI       |
| ANAHM_2_CANYN4           | 25214 | CanyonGT 4 | 13.8 | 49.40  | 4 | Western              |              | MUNI       |
| ANAHM_7_CT               | 25208 | DowlingCTG | 13.8 | 40.64  | 1 | Western              | Aug NQC      | MUNI       |
| ARCOGN_2_UNITS           | 24011 | ARCO 1G    | 13.8 | 62.63  | 1 | Western              | Aug NQC      | QF/Selfgen |
| ARCOGN_2_UNITS           | 24012 | ARCO 2G    | 13.8 | 62.63  | 2 | Western              | Aug NQC      | QF/Selfgen |
| ARCOGN_2_UNITS           | 24013 | ARCO 3G    | 13.8 | 62.63  | 3 | Western              | Aug NQC      | QF/Selfgen |
| ARCOGN_2_UNITS           | 24014 | ARCO 4G    | 13.8 | 62.63  | 4 | Western              | Aug NQC      | QF/Selfgen |
| ARCOGN_2_UNITS           | 24163 | ARCO 5G    | 13.8 | 31.32  | 5 | Western              | Aug NQC      | QF/Selfgen |

Total units and qualifying capacity available in the LA Basin area:

| ARCOGN 2 UNITS                     | 24164 | ARCO 6G  | 13.8     | 31.33          | 6  | Western                    | Aug NQC                    | QF/Selfgen   |
|------------------------------------|-------|----------|----------|----------------|----|----------------------------|----------------------------|--------------|
| BARRE 2 QF                         |       | BARRE    | 230      | 0.00           |    | Western                    | Not modeled                | QF/Selfgen   |
| BARRE_6_PEAKER                     | 29309 | BARPKGEN | 13.8     | 47.00          | 1  | Western                    |                            | Market       |
| BLAST_1_WIND                       | 24839 | BLAST    | 115      | 8.16           | 1  | Eastern                    | Aug NQC                    | Wind         |
| BRDWAY_7_UNIT 3                    | 29007 | BRODWYSC | 13.8     | 65.00          | 1  | Western                    |                            | MUNI         |
| BUCKWD_1_NPALM1                    | 25634 | BUCKWIND | 115      | 2.23           |    | Eastern, Valley-<br>Devers | Not modeled Aug<br>NQC     | Wind         |
| BUCKWD_1_QF                        | 25634 | BUCKWIND | 115      | 2.75           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| BUCKWD_7_WINTCV                    | 25634 | BUCKWIND | 115      | 0.18           | W5 | Devers                     | Aug NQC                    | Wind         |
| CABZON_1_WINDA1                    | 29290 | CABAZON  | 33       | 13.53          | 1  | Eastern, Valley-<br>Devers | Aug NQC                    | Wind         |
| CENTER_2_QF                        | 24203 | CENTER S | 66       | 18.58          |    | Western                    | Not modeled Aug<br>NQC     | QF/Selfgen   |
| CENTER_2_RHONDO                    |       |          | 66       | 1.91           |    | Western                    | Not modeled                | QF/Selfgen   |
|                                    |       |          | 13.8     | 47.00          |    | Western                    |                            | Market       |
| CENTRY_6_PL1X4                     |       |          | 13.8     | 36.00          |    | Eastern                    | Aug NQC                    | MUNI         |
| CHEVMN_2_UNITS                     |       | CHEVGEN1 | 13.8     | 0.00           |    | Western, El Nido           | Aug NQC                    | QF/Selfgen   |
| CHEVMN_2_UNITS                     | 24023 | CHEVGEN2 | 13.8     | 0.00           | 2  | Western, El Nido           | Aug NQC<br>Not modeled Aug | QF/Selfgen   |
| CHINO_2_QF                         |       | CHINO    | 66       | 6.18           |    | None                       | NQC                        | QF/Selfgen   |
| CHINO_2_SOLAR                      |       | CHINO    | 66       | 0.00           |    | None                       | Not modeled                | Market       |
| CHINO_6_CIMGEN                     |       | CIMGEN   | 13.8     | 26.00          |    | None                       | Aug NQC                    | QF/Selfgen   |
| CHINO_6_SMPPAP                     | 24140 | SIMPSON  | 13.8     | 28.71          | D1 | None                       | Aug NQC                    | QF/Selfgen   |
| CHINO_7_MILIKN                     |       | CHINO    | 66       | 1.47           |    | None                       | Not modeled Aug<br>NQC     | Market       |
| COLTON_6_AGUAM1                    |       |          | 13.8     | 43.00          | 1  | Eastern                    | Nationadalad               | MUNI         |
| CORONS_6_CLRWTR<br>CORONS_6_CLRWTR |       |          | 66<br>66 | 14.00<br>14.00 |    | Eastern<br>Eastern         | Not modeled<br>Not modeled | MUNI<br>MUNI |
| DEVERS_1_QF                        |       | GARNET   | 115      | 2.06           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25632 | TERAWND  | 115      | 4.01           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25633 | CAPWIND  | 115      | 0.77           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25635 | ALTWIND  | 115      | 1.84           | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25635 | ALTWIND  | 115      | 3.41           | Q2 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25636 | RENWIND  | 115      | 0.80           | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25636 | RENWIND  | 115      | 0.37           | W1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25637 | TRANWIND | 115      | 9.10           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25639 | SEAWIND  | 115      | 2.74           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25640 | PANAERO  | 115      | 2.44           | QF | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25645 | VENWIND  | 115      | 2.09           | EU | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25645 | VENWIND  | 115      | 4.88           | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25645 | VENWIND  | 115      | 3.29           | Q2 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |
| DEVERS_1_QF                        | 25646 | SANWIND  | 115      | 1.09           | Q1 | Eastern, Valley-<br>Devers | Aug NQC                    | QF/Selfgen   |

| DEVERS_1_QF     | 25646 | SANWIND  | 115  | 3.66   | Q2 | Eastern, Valley-<br>Devers | Aug NQC                | QF/Selfgen |
|-----------------|-------|----------|------|--------|----|----------------------------|------------------------|------------|
| DMDVLY_1_UNITS  | 25425 | ESRP P2  | 6.9  | 2.18   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| DREWS_6_PL1X4   | 25301 | CLTNDREW | 13.8 | 36.00  | 1  | Eastern                    | Aug NQC                | MUNI       |
| DVLCYN 1 UNITS  | 25603 | DVLCYN3G | 13.8 | 67.15  | 3  | Eastern                    | Aug NQC                | MUNI       |
| DVLCYN 1 UNITS  | 25604 | DVLCYN4G | 13.8 | 67.15  | 4  | Eastern                    | Aug NQC                | MUNI       |
| DVLCYN 1 UNITS  | 25648 | DVLCYN1G | 13.8 | 50.35  | 1  | Eastern                    | Aug NQC                | MUNI       |
| DVLCYN 1 UNITS  |       | DVLCYN2G | 13.8 | 50.35  | 2  | Eastern                    | Aug NQC                | MUNI       |
| ELLIS_2_QF      | 24197 |          | 66   | 0.00   |    | Western, Ellis             | Not modeled Aug<br>NQC | QF/Selfgen |
| ELSEGN 7 UNIT 3 | 24047 | ELSEG3 G | 18   | 335.00 | 3  | Western, El Nido           |                        | Market     |
| ELSEGN 7 UNIT 4 | 24048 | ELSEG4 G | 18   | 335.00 | 4  | Western, El Nido           |                        | Market     |
| ETIWND_2_FONTNA | 24055 | ETIWANDA | 66   | 1.08   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| ETIWND_2_QF     | 24055 | ETIWANDA | 66   | 14.97  |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| ETIWND_2_SOLAR  | 24055 | ETIWANDA | 66   | 0.00   |    | Eastern                    | Not modeled Aug<br>NQC | Market     |
| ETIWND_6_GRPLND | 29305 | ETWPKGEN | 13.8 | 46.00  | 1  | Eastern                    |                        | Market     |
| ETIWND_6_MWDETI | 25422 | ETI MWDG | 13.8 | 11.86  | 1  | Eastern                    | Aug NQC                | Market     |
| ETIWND_7_MIDVLY | 24055 | ETIWANDA | 66   | 1.54   |    | Eastern                    | Not modeled Aug<br>NQC | QF/Selfgen |
| ETIWND_7_UNIT 3 | 24052 | MTNVIST3 | 18   | 320.00 | 3  | Eastern                    |                        | Market     |
| ETIWND_7_UNIT 4 | 24053 | MTNVIST4 | 18   | 320.00 | 4  | Eastern                    |                        | Market     |
| GARNET_1_UNITS  | 24815 | GARNET   | 115  | 1.10   | G1 | Eastern, Valley-<br>Devers | Aug NQC                | QF/Selfgen |
| GARNET_1_UNITS  | 24815 | GARNET   | 115  | 0.39   | G2 | Eastern, Valley-<br>Devers | Aug NQC                | QF/Selfgen |
| GARNET_1_UNITS  | 24815 | GARNET   | 115  | 0.79   | G3 | Eastern, Valley-<br>Devers | Aug NQC                | QF/Selfgen |
| GARNET_1_WIND   | 24815 | GARNET   | 115  | 0.43   | PC | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| GARNET_1_WINDS  | 24815 | GARNET   | 115  | 1.87   | W2 | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| GARNET_1_WINDS  | 24815 | GARNET   | 115  | 1.88   | W3 | Eastern, Valley-<br>Devers | Aug NQC                | Wind       |
| GLNARM_7_UNIT 1 | 29005 | PASADNA1 | 13.8 | 22.30  | 1  | Western                    |                        | MUNI       |
| GLNARM_7_UNIT 2 | 29006 | PASADNA2 | 13.8 | 22.30  | 1  | Western                    |                        | MUNI       |
| GLNARM_7_UNIT 3 | 29005 | PASADNA1 | 13.8 | 44.83  |    | Western                    | Not modeled            | MUNI       |
| GLNARM_7_UNIT 4 | 29006 | PASADNA2 | 13.8 | 42.42  |    | Western                    | Not modeled            | MUNI       |
| HARBGN_7_UNITS  | 24062 | HARBOR G | 13.8 | 76.28  | 1  | Western                    |                        | Market     |
| HARBGN_7_UNITS  | 24062 | HARBOR G | 13.8 | 11.86  | ΗP | Western                    |                        | Market     |
| HARBGN_7_UNITS  | 25510 | HARBORG4 | 4.16 | 11.86  | LP | Western                    |                        | Market     |
| HINSON_6_CARBGN | 24020 | CARBOGEN | 13.8 | 28.94  | 1  | Western                    | Aug NQC                | Market     |
| HINSON_6_LBECH1 | 24170 | LBEACH12 | 13.8 | 65.00  | 1  | Western                    |                        | Market     |
| HINSON_6_LBECH2 | 24170 | LBEACH12 | 13.8 | 65.00  | 2  | Western                    |                        | Market     |
| HINSON_6_LBECH3 | 24171 | LBEACH34 | 13.8 | 65.00  | 3  | Western                    |                        | Market     |
| HINSON_6_LBECH4 |       | LBEACH34 | 13.8 | 65.00  | 4  | Western                    |                        | Market     |
| HINSON_6_SERRGN |       | SERRFGEN | 13.8 | 28.37  | _  | Western                    | Aug NQC                | QF/Selfgen |
| HNTGBH_7_UNIT 1 |       | HUNT1 G  | 13.8 | 225.75 |    | Western, Ellis             |                        | Market     |
| HNTGBH_7_UNIT 2 | 24067 | HUNT2 G  | 13.8 | 225.80 | 2  | Western, Ellis             |                        | Market     |
| INDIGO_1_UNIT 1 | 29190 | WINTECX2 | 13.8 | 42.00  | 1  | Eastern, Valley-<br>Devers |                        | Market     |
| INDIGO_1_UNIT 2 | 29191 | WINTECX1 | 13.8 | 42.00  | 1  | Eastern, Valley-<br>Devers |                        | Market     |

| INDIGO_1_UNIT 3 | 29180 | WINTEC8  | 13.8 | 42.00  | 1  | Eastern, Valley-<br>Devers        |                        | Market     |
|-----------------|-------|----------|------|--------|----|-----------------------------------|------------------------|------------|
| INLDEM_5_UNIT 1 | 29041 | IEEC-G1  | 19.5 | 335.00 | 1  | Eastern, Valley,<br>Valley-Devers | Aug NQC                | Market     |
| INLDEM_5_UNIT 2 | 29042 | IEEC-G2  | 19.5 | 335.00 | 1  | Eastern, Valley,<br>Valley-Devers | Aug NQC                | Market     |
| JOHANN_6_QFA1   | 24072 | JOHANNA  | 230  | 0.01   |    | Western, Ellis                    | Not modeled Aug<br>NQC | QF/Selfgen |
| LACIEN_2_VENICE | 24337 | VENICE   | 13.8 | 4.74   | 1  | Western, El Nido                  | Aug NQC                | MUNI       |
| LAFRES_6_QF     | 24073 | LA FRESA | 66   | 2.21   |    | Western, El Nido                  | Not modeled Aug<br>NQC | QF/Selfgen |
| LAGBEL_6_QF     |       | LAGUBELL | 66   | 10.04  |    | Western                           | Not modeled Aug<br>NQC | QF/Selfgen |
| LGHTHP_6_ICEGEN | 24070 | ICEGEN   | 13.8 | 46.95  | 1  | Western                           | Aug NQC                | QF/Selfgen |
| LGHTHP_6_QF     | 24083 | LITEHIPE | 66   | 1.00   |    | Western                           | Not modeled Aug<br>NQC | QF/Selfgen |
| MESAS_2_QF      | 24209 | MESA CAL | 66   | 0.69   |    | Western                           | Not modeled Aug<br>NQC | QF/Selfgen |
| MIRLOM_2_CORONA |       |          |      | 2.35   |    | Eastern                           | Not modeled Aug<br>NQC | QF/Selfgen |
| MIRLOM_2_ONTARO |       |          |      | 0.00   |    | Eastern                           | Energy Only            | Market     |
| MIRLOM_2_TEMESC |       |          |      | 2.53   |    | Eastern                           | Not modeled Aug<br>NQC | QF/Selfgen |
| MIRLOM_6_DELGEN | 24030 | DELGEN   | 13.8 | 33.98  | 1  | Eastern                           | Aug NQC                | QF/Selfgen |
| MIRLOM_6_PEAKER | 29307 | MRLPKGEN | 13.8 | 46.00  | 1  | Eastern                           |                        | Market     |
| MIRLOM_7_MWDLKM | 24210 | MIRALOMA | 66   | 3.58   |    | Eastern                           | Not modeled Aug<br>NQC | MUNI       |
| MOJAVE_1_SIPHON | 25657 | MJVSPHN1 | 13.8 | 4.66   | 1  | Eastern                           | Aug NQC                | Market     |
| MOJAVE_1_SIPHON |       | MJVSPHN1 | 13.8 | 4.67   | 2  | Eastern                           | Aug NQC                | Market     |
| MOJAVE_1_SIPHON | 25657 | MJVSPHN1 | 13.8 | 4.67   | 3  | Eastern                           | Aug NQC                | Market     |
| MTWIND_1_UNIT 1 | 29060 | MOUNTWND | 115  | 9.20   | S1 | Eastern, Valley-<br>Devers        | Aug NQC                | Wind       |
| MTWIND_1_UNIT 2 | 29060 | MOUNTWND | 115  | 3.64   | S2 | Eastern, Valley-<br>Devers        | Aug NQC                | Wind       |
| MTWIND_1_UNIT 3 | 29060 | MOUNTWND | 115  | 3.54   | S3 | Eastern, Valley-<br>Devers        | Aug NQC                | Wind       |
| OLINDA_2_COYCRK | 24211 | OLINDA   | 66   | 3.13   |    | Western                           | Not modeled            | QF/Selfgen |
| OLINDA_2_LNDFL2 |       | OLINDA   | 66   | 28.10  |    | Western                           | Not modeled            | Market     |
| OLINDA_2_QF     | 24211 | OLINDA   | 66   | 0.17   | 1  | Western                           | Aug NQC                | QF/Selfgen |
| OLINDA_7_LNDFIL | 24211 | OLINDA   | 66   | 4.50   |    | Western                           | Not modeled Aug<br>NQC | QF/Selfgen |
| PADUA_2_ONTARO  | 24111 | PADUA    | 66   | 0.88   |    | Eastern                           | Not modeled Aug<br>NQC | QF/Selfgen |
| PADUA_6_MWDSDM  | 24111 | PADUA    | 66   | 6.48   |    | Eastern                           | Not modeled Aug<br>NQC | MUNI       |
| PADUA_6_QF      | 24111 | PADUA    | 66   | 0.68   |    | Eastern                           | Not modeled Aug<br>NQC | QF/Selfgen |
| PADUA_7_SDIMAS  | 24111 | PADUA    | 66   | 1.05   |    | Eastern                           | Not modeled Aug<br>NQC | QF/Selfgen |
| PWEST_1_UNIT    |       |          |      | 0.13   |    | Western                           | Not modeled Aug<br>NQC | Market     |
| REDOND_7_UNIT 5 | 24121 | REDON5 G | 18   | 178.87 | 5  | Western                           |                        | Market     |
| REDOND_7_UNIT 6 | 24122 | REDON6 G | 18   | 175.00 | 6  | Western                           |                        | Market     |
| REDOND_7_UNIT 7 | 24123 | REDON7 G | 20   | 505.96 | 7  | Western                           |                        | Market     |
| REDOND_7_UNIT 8 | 24124 | REDON8 G | 20   | 495.90 | 8  | Western                           |                        | Market     |
| RENWD_1_QF      | 25636 | RENWIND  | 115  | 1.70   | Q2 | Eastern, Valley-<br>Devers        | Aug NQC                | QF/Selfgen |

| RHONDO_2_QF                        | 24213   | RIOHONDO             | 66         | 2.50          |          | Western                           | Not modeled Aug<br>NQC     | QF/Selfgen         |
|------------------------------------|---------|----------------------|------------|---------------|----------|-----------------------------------|----------------------------|--------------------|
| RHONDO_6_PUENTE                    | 24213   | RIOHONDO             | 66         | 0.00          |          | Western                           | Not modeled Aug<br>NQC     | Market             |
| RVSIDE 2 RERCU3                    | 24299   | RERC2G3              | 13.8       | 48.50         | 1        | Eastern                           |                            | MUNI               |
|                                    |         | RERC2G4              | 13.8       | 48.50         |          | Eastern                           |                            | MUNI               |
|                                    |         | RERC1G               | 13.8       | 48.35         |          | Eastern                           |                            | MUNI               |
|                                    |         | RERC2G               | 13.8       | 48.50         |          | Eastern                           |                            | MUNI               |
|                                    |         | SPRINGEN             | 13.8       | 36.00         |          | Eastern                           |                            | Market             |
| SANTGO 6 COYOTE                    |         | SANTIAGO             | 66         | 5.94          |          | Western, Ellis                    | Aug NQC                    | Market             |
|                                    |         | MNTV-CT1             | 18         | 129.71        | 1        | Eastern, West of Devers           | Aug NQC                    | Market             |
| SBERDO_2_PSP3                      | 24922   | MNTV-CT2             | 18         | 129.71        | 1        | Eastern, West of<br>Devers        |                            | Market             |
| SBERDO_2_PSP3                      | 24923   | MNTV-ST1             | 18         | 225.08        | 1        | Eastern, West of<br>Devers        |                            | Market             |
| SBERDO_2_PSP4                      | 24924   | MNTV-CT3             | 18         | 129.71        | 1        | Eastern, West of<br>Devers        |                            | Market             |
| SBERDO_2_PSP4                      | 24925   | MNTV-CT4             | 18         | 129.71        | 1        | Eastern, West of<br>Devers        |                            | Market             |
| SBERDO_2_PSP4                      | 24926   | MNTV-ST2             | 18         | 225.08        | 1        | Eastern, West of<br>Devers        |                            | Market             |
| SBERDO_2_QF                        | 24214   | SANBRDNO             | 66         | 0.12          |          | Eastern, West of<br>Devers        | Not modeled Aug<br>NQC     | QF/Selfgen         |
| SBERDO_2_REDLND                    | 24214   | SANBRDNO             | 66         | 0.00          |          | Eastern, West of<br>Devers        | Energy Only                | Market             |
| SBERDO_2_SNTANA                    | 24214   | SANBRDNO             | 66         | 0.60          |          | Eastern, West of<br>Devers        | Not modeled Aug<br>NQC     | QF/Selfgen         |
|                                    |         | SANBRDNO             | 66         | 1.68          |          | Eastern, West of<br>Devers        | Not modeled Aug<br>NQC     | QF/Selfgen         |
| SONGS_7_UNIT 2                     | 24129   | S.ONOFR2             | 22         | 1122.00       | 2        | None                              |                            | Nuclear            |
| SONGS_7_UNIT 3                     | 24130   | S.ONOFR3             | 22         | 1124.00       | 3        | None                              |                            | Nuclear            |
| TIFFNY_1_DILLON                    |         |                      |            | 6.23          |          | Western                           | Not modeled Aug<br>NQC     | Wind               |
| VALLEY_5_PERRIS                    | 24160   | VALLEYSC             | 115        | 7.94          |          | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC     | QF/Selfgen         |
| VALLEY_5_REDMTN                    | 24160   | VALLEYSC             | 115        | 2.66          |          | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC     | QF/Selfgen         |
| VALLEY_7_BADLND                    | 24160   | VALLEYSC             | 115        | 0.83          |          | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC     | Market             |
|                                    | 24160   | VALLEYSC             | 115        | 1.88          |          | Eastern, Valley,<br>Valley-Devers | Not modeled Aug<br>NQC     | Market             |
| VERNON_6_GONZL1                    |         |                      |            | 5.75          |          | Western                           | Not modeled                | MUNI               |
| VERNON_6_GONZL2                    | 0.405 - |                      | 4.0        | 5.75          | <u> </u> | Western                           | Not modeled                | MUNI               |
| VERNON_6_MALBRG                    |         |                      | 13.8       | 42.37         |          | Western                           |                            | MUNI               |
| VERNON_6_MALBRG                    |         |                      | 13.8       | 42.37         |          | Western                           |                            | MUNI               |
| VERNON_6_MALBRG<br>VILLPK 2 VALLYV |         | MALBRG3G<br>VILLA PK | 13.8<br>66 | 49.26<br>4.10 | \$3      | Western<br>Western                | Not modeled Aug            | MUNI<br>QF/Selfgen |
|                                    |         | VILLA PK             | 66         | 0.00          |          | Western                           | NQC<br>Not modeled Aug     | MUNI               |
|                                    |         |                      |            |               |          |                                   | NQC                        |                    |
|                                    |         | VSTA                 | 230        | 0.00          | 4        | Eastern                           | Energy Only                | Market             |
| VISTA_6_QF                         | 24902   |                      | 66         | 0.17          |          | Eastern                           | Aug NQC                    | QF/Selfgen         |
| WALNUT_6_HILLGEN                   |         |                      | 13.8       | 47.60         | 1        | Western                           | Aug NQC<br>Not modeled Aug | QF/Selfgen         |
| WALNUT_7_WCOVCT                    |         |                      | 66         | 3.33          |          | Western                           | NQC                        | Market             |
| WALNUT_7_WCOVST                    |         |                      | 66         | 3.65          | 4        | Western                           | Not modeled Aug<br>NQC     | Market             |
| WHTWTR_1_WINDA1                    | 29001   | VVNILEVVIK           | 33         | 11.11         | 1        | Eastern, Valley-                  | Aug NQC                    | Wind               |

| 1               | I     | 1        |      |       |    | Devers                     |                     |            |
|-----------------|-------|----------|------|-------|----|----------------------------|---------------------|------------|
| ARCOGN_2_UNITS  | 24018 | BRIGEN   | 13.8 | 0.00  |    | Western                    | No NQC - hist. data | Market     |
| HINSON_6_QF     | 24064 | HINSON   | 66   | 0.00  | 1  | Western                    | No NQC - hist. data | QF/Selfgen |
| INLAND_6_UNIT   | 24071 | INLAND   | 13.8 | 30.30 | 1  | Eastern                    | No NQC - hist. data | QF/Selfgen |
| MOBGEN_6_UNIT 1 | 24094 | MOBGEN   | 13.8 | 20.20 | 1  | Western, El Nido           | No NQC - hist. data | QF/Selfgen |
| NA              | 24063 | HILLGEN  | 13.8 | 0.00  | D1 | Western                    | No NQC - hist. data | QF/Selfgen |
| NA              | 24324 | SANIGEN  | 13.8 | 6.80  | D1 | Eastern                    | No NQC - hist. data | QF/Selfgen |
| NA              | 24325 | ORCOGEN  | 13.8 | 0.00  | 1  | Western, Ellis             | No NQC - hist. data | QF/Selfgen |
| NA              | 24327 | THUMSGEN | 13.8 | 40.00 | 1  | Western                    | No NQC - hist. data | 0          |
| NA              | 24328 | CARBGEN2 | 13.8 | 15.2  | 1  | Western                    | No NQC - hist. data |            |
| NA              | 24329 | MOBGEN2  | 13.8 | 20.2  |    | Western, El Nido           | No NQC - hist. data |            |
| NA              |       | OUTFALL1 | 13.8 | 0.00  |    |                            | No NQC - hist. data | -          |
| NA              | 24331 | OUTFALL2 | 13.8 | 0.00  |    |                            | No NQC - hist. data | -          |
| NA              | 24332 | PALOGEN  | 13.8 | 3.60  | D1 | Western, El Nido           | No NQC - hist. data | •          |
| NA              | 24341 | COYGEN   | 13.8 | 0.00  | 1  | Western, Ellis             | No NQC - hist. data | QF/Selfgen |
| NA              | 24342 | FEDGEN   | 13.8 | 0.00  | 1  | Western                    | No NQC - hist. data | QF/Selfgen |
| NA              | 29021 | WINTEC6  | 115  | 45.00 | 1  | Eastern, Valley-<br>Devers | No NQC - hist. data | Wind       |
| NA              |       | WINTEC4  | 12   | 16.50 | 1  | Eastern, Valley-<br>Devers | No NQC - hist. data | Wind       |
| NA              |       | SEAWEST  | 115  | 44.40 | -  | Eastern                    | No NQC - hist. data |            |
| NA              |       | SEAWEST  | 115  | 22.20 |    | Eastern                    | No NQC - hist. data |            |
| NA              | 29060 | SEAWEST  | 115  | 22.40 |    | Eastern                    | No NQC - hist. data | Wind       |
| NA              | 29260 | ALTAMSA4 | 115  | 40.00 | 1  | Eastern, Valley-<br>Devers | No NQC - hist. data | Wind       |
| NA              | 29338 | CLRWTRCT | 13.8 | 0.00  | G1 | Eastern                    | No NQC - hist. data | -          |
| NA              |       | DELGEN   | 13.8 | 0.00  |    | Eastern                    | No NQC - hist. data | •          |
| NA              |       | CLRWTRST | 13.8 | 0.00  |    | Eastern                    | No NQC - hist. data | -          |
| NA              |       | REFUSE   | 13.8 | 9.90  |    | Western                    | No NQC - Pmax       | QF/Selfgen |
| NA              |       | SIGGEN   | 13.8 | 24.90 |    | Western                    | No NQC - Pmax       | QF/Selfgen |
| HNTGBH_7_UNIT 3 |       | HUNT3 G  | 13.8 | 0.00  |    | Western, Ellis             | Retired             | Market     |
| HNTGBH_7_UNIT 4 | 24168 | HUNT4 G  | 13.8 | 0.00  |    | Western, Ellis             | Retired             | Market     |
| New unit        | 28174 | RPS11031 | 13.8 | 37    | EQ | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29101 | RPS10501 | 13.8 | 107   | 1  | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29102 | RPS10500 | 13.8 | 107   | I  | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29103 | RPS10499 | 13.8 | 107   |    | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29104 | RPS10498 | 13.8 | 107   |    | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29105 | RPS10497 | 13.8 | 107   |    | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29106 | RPS10496 | 13.8 | 107   | I  | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29107 | RPS10495 | 13.8 | 107   |    | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29108 | RPS10494 | 13.8 | 107   |    | Eastern, Valley-<br>Devers | No NQC - Pmax       | Market     |
| New unit        | 29201 | EME WCG1 | 13.8 | 100   | 1  | Western                    | No NQC - Pmax       | Market     |
| New unit        | 29202 | EME WCG2 | 13.8 | 100   | 1  | Western                    | No NQC - Pmax       | Market     |
| New unit        |       | EME WCG3 | 13.8 | 100   | 1  | Western                    | No NQC - Pmax       | Market     |
| New unit        |       | EME WCG4 | 13.8 | 100   | 1  | Western                    | No NQC - Pmax       | Market     |
| New unit        | 29205 | EME WCG5 | 13.8 | 100   | 1  | Western                    | No NQC - Pmax       | Market     |

| New unit | 29901 | ELSEG8ST | 18 | 77  | 8 | Western, El Nido | No NQC - Pmax | Market |
|----------|-------|----------|----|-----|---|------------------|---------------|--------|
| New unit | 29902 | ELSEG7GT | 18 | 205 | 7 | Western, El Nido | No NQC - Pmax | Market |
| New unit | 29903 | ELSEG6ST | 18 | 77  | 6 | Western, El Nido | No NQC - Pmax | Market |
| New unit | 29904 | ELSEG5ST | 18 | 205 | 5 | Western, El Nido | No NQC - Pmax | Market |

#### Major new projects modeled:

- 1. Colorado River-Devers #2 500 kV line
- 2. Tehachapi Transmission Project (phased in)
- 3. Vincent-Mira Loma 500 kV (part of Tehachapi Upgrade)
- 4. Four new power plants totaling over 1900 MW

## Critical Contingency Analysis Summary

## Ellis Sub-area:

This sub-are has no requirements due to the Barre-Ellis 230 kV split projects as well as the use of Ellis area SPS for N-1 followed by N-2 conditions.

## El Nido Sub-area:

The most critical contingency could be the loss of La Fresa - Redondo #1 and #2 230 kV lines followed by the loss of Hinson - La Fresa 230 kV line, which would result in voltage collapse. This limiting contingency establishes a local capacity need of 536 MW (includes 46 MW of QF and 5 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Western LA Basin Sub-area:

The most critical contingency is the loss of one of the Serrano - Villa Park 230 kV #2 line followed by the loss of the Serrano - Lewis 230 kV line, which would result in thermal overload of the Serrano - Villa Park 230 kV line #1. This limiting contingency establishes a local capacity need of 4211 MW (includes 604 MW of QF, 6 MW of wind and 583 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

# Effectiveness factors:

The following table has units that have at least 5% effectiveness factors.

| Gen Bus | Gen Name   | Gen ID | MW Eff Fctr |
|---------|------------|--------|-------------|
| 29309   | BARPKGEN   | 1      | 28          |
| 25208   | DowlingCTG | 1      | 27          |
| 25211   | CanyonGT 1 | 1      | 27          |
| 25212   | CanyonGT 2 | 2      | 27          |
| 25213   | CanyonGT 3 | 3      | 27          |
| 25214   | CanyonGT 4 | 4      | 27          |
| 24066   | HUNT1 G    | 1      | 24          |
| 24067   | HUNT2 G    | 2      | 24          |
| 24325   | ORCOGEN    | 1      | 24          |
| 24001   | ALAMT1 G   | 1      | 21          |
| 24002   | ALAMT2 G   | 2      | 21          |
| 24003   | ALAMT3 G   | 3      | 21          |
| 24004   | ALAMT4 G   | 4      | 21          |
| 24005   | ALAMT5 G   | 5      | 21          |
| 24161   | ALAMT6 G   | 6      | 21          |
| 24133   | SANTIAGO   | 1      | 18          |
| 24341   | COYGEN     | 1      | 18          |
| 24018   | BRIGEN     | 1      | 17          |
| 24011   | ARCO 1G    | 1      | 15          |
| 24012   | ARCO 2G    | 2      | 15          |
| 24013   | ARCO 3G    | 3      | 15          |
| 24014   | ARCO 4G    | 4      | 15          |
| 24163   | ARCO 5G    | 5      | 15          |
| 24164   | ARCO 6G    | 6      | 15          |
| 24020   | CARBGEN1   | 1      | 15          |
| 24064   | HINSON     | 1      | 15          |
| 24070   | ICEGEN     | D1     | 15          |
| 24170   | LBEACH12   | 2      | 15          |
| 24171   | LBEACH34   | 3      | 15          |
| 24062   | HARBOR G   | 1      | 15          |
| 25510   | HARBORG4   | LP     | 15          |
| 24062   | HARBOR G   | HP     | 15          |
| 29308   | CTRPKGEN   | 1      | 15          |
| 24139   | SERRFGEN   | D1     | 15          |
| 24170   | LBEACH12   | 1      | 15          |
| 24171   | LBEACH34   | 4      | 15          |
| 24327   | THUMSGEN   | 1      | 15          |
| 24328   | CARBGEN2   | 1      | 15          |

| 29953 | SIGGEN   | D1 | 15 |
|-------|----------|----|----|
| 24022 | CHEVGEN1 | 1  | 14 |
| 24023 | CHEVGEN2 | 2  | 14 |
| 24047 | ELSEG3 G | 3  | 14 |
| 24048 | ELSEG4 G | 4  | 14 |
| 24094 | MOBGEN1  | 1  | 14 |
| 24121 | REDON5 G | 5  | 14 |
| 24122 | REDON6 G | 6  | 14 |
| 24123 | REDON7 G | 7  | 14 |
| 24124 | REDON8 G | 8  | 14 |
| 24329 | MOBGEN2  | 1  | 14 |
| 24330 | OUTFALL1 | 1  | 14 |
| 24331 | OUTFALL2 | 1  | 14 |
| 24332 | PALOGEN  | D1 | 14 |
| 24337 | VENICE   | 1  | 14 |
| 28901 | ELSEG8ST | 8  | 14 |
| 28902 | ELSEG7GT | 7  | 14 |
| 28903 | ELSEG6ST | 6  | 14 |
| 28904 | ELSEG5GT | 5  | 14 |
| 24240 | MALBRG2G | C2 | 13 |
| 29951 | REFUSE   | D1 | 13 |
| 24342 | FEDGEN   | 1  | 13 |
| 24241 | MALBRG3G | S3 | 12 |
| 24239 | MALBRG1G | C1 | 12 |
| 29005 | PASADNA1 | 1  | 9  |
| 29006 | PASADNA2 | 1  | 9  |
| 29007 | BRODWYSC | 1  | 9  |
| 29205 | EME WCG5 | 1  | 6  |
| 24063 | HILLGEN  | D1 | 6  |
| 29201 | EME WCG1 | 1  | 5  |
| 29203 | EME WCG3 | 1  | 5  |
| 29204 | EME WCG4 | 1  | 5  |
| 29202 | EME WCG2 | 1  | 5  |
|       |          |    |    |

There are numerous other combinations of contingencies in the area that could overload a significant number of 230 kV lines in this sub-area/area and have slightly less LCR need. As such, anyone of them (combination of contingencies) could become binding for any given set of procured resources. As a result, these effectiveness factors may not facilitate more informed procurement.

### West of Devers Sub-area:

The most critical contingency could be the loss of San Bernardino – Etiwanda 230 kV and San Bernardino – Vista 230 kV lines, which would result in voltage collapse. This limiting contingency establishes a local capacity need of 468 MW (includes 2 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area

## **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Valley-Devers Sub-area:

The most critical contingency is the loss of one of the Palo Verde - Colorado River 500 kV line followed by the loss of Alberthill - Serrano 500 kV, which would result in thermal overload of Camino – Iron Mountain 230 kV line. This limiting contingency establishes a local capacity need of 1,689 MW (includes 60 MW of QF and 149 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this area have the same effectiveness factor.

#### Valley Sub-area:

Resources needed to meet the Valley-Devers sub-area are enough to meet this subarea requirement as well.

## Eastern LA Basin Sub-area:

Resources needed to meet the West of Devers and Valley-Devers sub-areas are enough to meet this sub-area requirement as well.

## LA Basin Overall:

The most critical contingency is the loss of the Lugo - Victorville 500 kV Line followed by the loss of Sylmar - Gould 230.0 kV or vice versa, which would result in thermal overload on the Sylmar - Eagle Rock 230 kV. This limiting contingency establishes a local capacity need of about 11,071 MW (includes 825 MW of QF, 253 MW of wind, 1164 MW of MUNI and 2246 MW of Nuclear generation) as the minimum capacity necessary for reliable load serving capability within this area.

The most critical single contingency is the loss of the Sylmar S - Gould 230 kV line with SONGS #3 unit out of service, which would result in thermal overload of the Sylmar S - Eagle Rock 230 kV line. This limiting contingency establishes a local capacity need of about 9,882 MW (includes 825 MW of QF, 253 MW of wind, 1164 MW of MUNI and 2246 MW of Nuclear generation).

### **Effectiveness factors:**

The following table has units that have at least 5% effectiveness.

| Gen Bus | Gen Name | Gen ID | MW Eff Fctr |
|---------|----------|--------|-------------|
| 29005   | PASADNA1 | 1      | 28          |
| 29006   | PASADNA2 | 1      | 28          |
| 29007   | BRODWYSC | 1      | 27          |
| 24241   | MALBRG3G | S3     | 18          |
| 24240   | MALBRG2G | C2     | 18          |
| 24239   | MALBRG1G | C1     | 18          |
| 29951   | REFUSE   | D1     | 18          |
| 24342   | FEDGEN   | 1      | 17          |
| 24022   | CHEVGEN1 | 1      | 15          |
| 24023   | CHEVGEN2 | 2      | 15          |
| 24047   | ELSEG3 G | 3      | 15          |
| 24048   | ELSEG4 G | 4      | 15          |
| 24094   | MOBGEN1  | 1      | 15          |
| 24121   | REDON5 G | 5      | 15          |
| 24122   | REDON6 G | 6      | 15          |
| 24123   | REDON7 G | 7      | 15          |
| 24124   | REDON8 G | 8      | 15          |
| 24329   | MOBGEN2  | 1      | 15          |
| 24330   | OUTFALL1 | 1      | 15          |
| 24331   | OUTFALL2 | 1      | 15          |
| 24332   | PALOGEN  | D1     | 15          |
|         |          |        |             |

| 24337 | VENICE   | 1  | 15 |
|-------|----------|----|----|
| 28901 | ELSEG8ST | 8  | 15 |
| 28902 | ELSEG7GT | 7  | 15 |
| 28903 | ELSEG6ST | 6  | 15 |
| 28904 | ELSEG5GT | 5  | 15 |
| 24011 | ARCO 1G  | 1  | 14 |
| 24012 | ARCO 2G  | 2  | 14 |
| 24013 | ARCO 3G  | 3  | 14 |
| 24014 | ARCO 4G  | 4  | 14 |
| 24163 | ARCO 5G  | 5  | 14 |
| 24164 | ARCO 6G  | 6  | 14 |
| 24018 | BRIGEN   | 1  | 14 |
| 24020 | CARBGEN1 | 1  | 14 |
| 24064 | HINSON   | 1  | 14 |
| 24070 | ICEGEN   | D1 | 14 |
| 24170 | LBEACH12 | 2  | 14 |
| 24171 | LBEACH34 | 3  | 14 |
| 24062 | HARBOR G | 1  | 14 |
| 25510 | HARBORG4 | LP | 14 |
| 24062 | HARBOR G | HP | 14 |
| 24139 | SERRFGEN | D1 | 14 |
| 24170 | LBEACH12 | 1  | 14 |
| 24171 | LBEACH34 | 4  | 14 |
| 24327 | THUMSGEN | 1  | 14 |
| 24328 | CARBGEN2 | 1  | 14 |
| 29308 | CTRPKGEN | 1  | 13 |
| 29953 | SIGGEN   | D1 | 13 |
| 24001 | ALAMT1 G | 1  | 12 |
| 24002 | ALAMT2 G | 2  | 12 |
| 24003 | ALAMT3 G | 3  | 12 |
| 24004 | ALAMT4 G | 4  | 12 |
| 24005 | ALAMT5 G | 5  | 11 |
| 24161 | ALAMT6 G | 6  | 11 |
| 29201 | EME WCG1 | 1  | 11 |
| 29203 | EME WCG3 | 1  | 11 |
| 29204 | EME WCG4 | 1  | 11 |
| 29205 | EME WCG5 | 1  | 11 |
| 29202 | EME WCG2 | 1  | 11 |
| 24063 | HILLGEN  | D1 | 11 |
| 24066 | HUNT1 G  | 1  | 10 |
| 24067 | HUNT2 G  | 2  | 10 |
| 29309 | BARPKGEN | 1  | 10 |
| 24325 | ORCOGEN  | 1  | 10 |
|       |          |    |    |

| 24133 | SANTIAGO   | 1  | 9 |
|-------|------------|----|---|
| 24341 | COYGEN     | 1  | 9 |
| 25208 | DowlingCTG | 1  | 9 |
| 25211 | CanyonGT 1 | 1  | 9 |
| 25212 | CanyonGT 2 | 2  | 9 |
| 25213 | CanyonGT 3 | 3  | 9 |
| 25214 | CanyonGT 4 | 4  | 9 |
| 24129 | S.ONOFR2   | 2  | 8 |
| 24030 | DELGEN     | 1  | 7 |
| 24130 | S.ONOFR3   | 3  | 7 |
| 29307 | MRLPKGEN   | 1  | 7 |
| 24026 | CIMGEN     | D1 | 7 |
| 24140 | SIMPSON    | D1 | 7 |
| 29339 | DELGEN     | 1  | 7 |
| 29338 | CLRWTRCT   | G1 | 7 |
| 25648 | DVLCYN1G   | 1  | 6 |
| 25649 | DVLCYN2G   | 2  | 6 |
| 25603 | DVLCYN3G   | 3  | 6 |
| 25604 | DVLCYN4G   | 4  | 6 |
| 24052 | MTNVIST3   | 3  | 6 |
| 24053 | MTNVIST4   | 4  | 6 |
| 24071 | INLAND     | 1  | 6 |
| 25422 | ETI MWDG   | 1  | 6 |
| 24921 | MNTV-CT1   | 1  | 6 |
| 24922 | MNTV-CT2   | 1  | 6 |
| 24923 | MNTV-ST1   | 1  | 6 |
| 24924 | MNTV-CT3   | 1  | 6 |
| 24925 | MNTV-CT4   | 1  | 6 |
| 24926 | MNTV-ST2   | 1  | 6 |
| 29041 | IEEC-G1    | 1  | 6 |
| 29042 | IEEC-G2    | 2  | 6 |
| 25632 | TERAWND    | QF | 6 |
| 25633 | CAPWIND    | QF | 6 |
| 25634 | BUCKWND    | QF | 6 |
| 25635 | ALTWIND    | Q1 | 6 |
| 25635 | ALTWIND    | Q2 | 6 |
| 25637 | TRANWND    | QF | 6 |
| 25639 | SEAWIND    | QF | 6 |
| 25640 | PANAERO    | QF | 6 |
| 25645 | VENWIND    | EU | 6 |
| 25645 | VENWIND    | Q2 | 6 |
| 25645 | VENWIND    | Q1 | 6 |
| 25646 | SANWIND    | Q2 | 6 |
|       |            |    |   |

| 24815 | GARNET   | QF | 6 |
|-------|----------|----|---|
| 24815 | GARNET   | W3 | 6 |
| 29023 | WINTEC4  | 1  | 6 |
| 29060 | MOUNTWND | S1 | 6 |
| 29060 | MOUNTWND | S3 | 6 |
| 29060 | MOUNTWND | S2 | 6 |
| 29061 | WHITEWTR | 1  | 6 |
| 29260 | ALTAMSA4 | 1  | 6 |
| 29290 | CABAZON  | 1  | 6 |
| 29021 | WINTEC6  | 1  | 6 |
| 24242 | RERC1G   | 1  | 6 |
| 24243 | RERC2G   | 1  | 6 |
| 24244 | SPRINGEN | 1  | 6 |
| 29305 | ETWPKGEN | 1  | 6 |
| 25301 | CLTNDREW | 1  | 6 |
| 25302 | CLTNCTRY | 1  | 6 |
| 25303 | CLTNAGUA | 1  | 6 |
| 24299 | RERC2G3  | 1  | 6 |
| 24300 | RERC2G4  | 1  | 6 |
| 24839 | BLAST    | 1  | 5 |
| 29106 | RPS10496 | 1  | 5 |
| 29107 | RPS10495 | 1  | 5 |
| 29108 | RPS10494 | 1  | 5 |
| 28174 | RPS11031 | EQ | 5 |
| 29190 | WINTECX2 | 1  | 5 |
| 29191 | WINTECX1 | 1  | 5 |
| 29180 | WINTEC8  | 1  | 5 |
| 25657 | MJVSPHN1 | 1  | 5 |
| 25658 | MJVSPHN2 | 2  | 5 |
| 25659 | MJVSPHN3 | 3  | 5 |
| 29101 | RPS10501 | 1  | 5 |
| 29102 | RPS10500 | 1  | 5 |
| 29103 | RPS10499 | 1  | 5 |
| 29104 | RPS10498 | 1  | 5 |
| 29105 | RPS10497 | 1  | 5 |
|       |          |    |   |

## Changes compared to last year's results:

Compared with 2017 the load forecast went down by 36 MW. The LA Basin LCR need has increased by 1,052 MW due to the load increase and also increase due to higher requirements in the West of Devers and Valley-Devers sub-areas with an overall increase of 652 MW between 2017 and 2018. The Western LA Basin requirements

have decreased due to the elimination of SONGS's contribution since it is not effective in mitigating the most stringent contingency.

|                      | QF   | Wind | Muni | Nuclear | Market | Max. Qualifying |
|----------------------|------|------|------|---------|--------|-----------------|
|                      | (MW) | (MW) | (MW) | (MW)    | (MW)   | Capacity (MW)   |
| Available generation | 825  | 253  | 1164 | 2246    | 9547   | 14035           |

## LA Basin Overall Requirements:

| 2018                                | Existing Generation<br>Capacity Needed (MW) | Deficiency<br>(MW) | Total MW<br>Requirement |  |
|-------------------------------------|---------------------------------------------|--------------------|-------------------------|--|
| Category B (Single) <sup>19</sup>   | 9,882                                       | 0                  | 9,882                   |  |
| Category C (Multiple) <sup>20</sup> | 11,071                                      | 0                  | 11,071                  |  |

# 9. Big Creek/Ventura Area

# Area Definition

The transmission tie lines into the Big Creek/Ventura Area are:

- 1) Antelope #1 500/230 kV Transformer
- 2) Antelope #2 500/230 kV Transformer
- 3) Sylmar Pardee 230 kV #1 and #2 Lines
- 4) Vincent Pardee 230 kV #2 Line
- 5) Vincent Santa Clara 230 kV Line

The substations that delineate the Big Creek/Ventura Area are:

- 1) Antelope 500 kV is out Antelope 230 kV is in
- 2) Antelope 500 kV is out Antelope 230 kV is in
- 3) Sylmar is out Pardee is in
- 4) Vincent is out Pardee is in
- 5) Vincent is out Santa Clara is in

Total 2018 busload within the defined area is 4,814 MW, with 66 MW of losses and 327

MW pumps resulting in total load + losses + pumps of 5,207 MW.

<sup>&</sup>lt;sup>19</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>20</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC    |    | LCR SUB-AREA<br>NAME         | NQC Comments | CAISO Tag |
|--------------------------|-------|----------|------|--------|----|------------------------------|--------------|-----------|
| ALAMO_6_UNIT             | 25653 | ALAMO SC | 13.8 | 16.00  | 1  | Big Creek                    | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24306 | B CRK1-1 | 7.2  | 19.38  | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24306 | B CRK1-1 | 7.2  | 21.03  | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24307 | B CRK1-2 | 13.8 | 21.03  | 3  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24307 | B CRK1-2 | 13.8 | 30.39  | 4  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24308 | B CRK2-1 | 13.8 | 49.48  | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24308 | B CRK2-1 | 13.8 | 50.64  | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24309 | B CRK2-2 | 7.2  | 18.22  | 3  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24309 | B CRK2-2 | 7.2  | 19.19  | 4  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24310 | B CRK2-3 | 7.2  | 16.55  | 5  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24310 | B CRK2-3 | 7.2  | 18.02  | 6  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24311 | B CRK3-1 | 13.8 | 34.09  | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24311 | B CRK3-1 | 13.8 | 34.09  | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24312 | B CRK3-2 | 13.8 | 34.09  | 3  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24312 | B CRK3-2 | 13.8 | 39.93  | 4  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24313 | B CRK3-3 | 13.8 | 37.99  | 5  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24314 | B CRK 4  | 11.5 | 49.09  | 41 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24314 | B CRK 4  | 11.5 | 49.28  | 42 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24315 | B CRK 8  | 13.8 | 23.76  | 81 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24315 | B CRK 8  | 13.8 | 42.85  | 82 | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24317 | MAMOTH1G | 13.8 | 91.07  | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24318 | MAMOTH2G | 13.8 | 91.07  | 2  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| BIGCRK_2_EXESWD          | 24323 | PORTAL   | 4.8  | 9.35   | 1  | Big Creek,<br>Rector, Vestal | Aug NQC      | Market    |
| EASTWD_7_UNIT            | 24319 | EASTWOOD | 13.8 | 199.00 | 1  | Big Creek,<br>Rector, Vestal |              | Market    |
| EDMONS_2_NSPIN           | 25605 | EDMON1AP | 14.4 | 22.15  | 1  | Big Creek                    | Pumps        | MUNI      |
| EDMONS_2_NSPIN           | 25606 | EDMON2AP | 14.4 | 22.15  | 2  | Big Creek                    | Pumps        | MUNI      |
| EDMONS_2_NSPIN           |       | EDMON3AP | 14.4 | 22.15  | 3  | Big Creek                    | Pumps        | MUNI      |
| EDMONS_2_NSPIN           |       | EDMON3AP | 14.4 | 22.15  | 4  | Big Creek                    | Pumps        | MUNI      |
| EDMONS_2_NSPIN           |       | EDMON4AP | 14.4 | 22.15  |    | Big Creek                    | Pumps        | MUNI      |
| EDMONS_2_NSPIN           | 25608 | EDMON4AP | 14.4 | 22.15  | 6  | Big Creek                    | Pumps        | MUNI      |

Total units and qualifying capacity available in the Big Creek/Ventura area:

| EDMONS_2_NSPIN                   | 25609 | EDMON5AP            | 14 4       | 22.15           | 7  | Big Creek                         | Pumps                  | MUNI                 |
|----------------------------------|-------|---------------------|------------|-----------------|----|-----------------------------------|------------------------|----------------------|
| EDMONS 2 NSPIN                   | 25609 | EDMON5AP            | 14.4       | 22.15           | 8  | Big Creek                         | Pumps                  | MUNI                 |
| EDMONS 2 NSPIN                   |       | EDMON6AP            | 14.4       | 22.15           | 9  | Big Creek                         | Pumps                  | MUNI                 |
| EDMONS 2 NSPIN                   | -     | EDMON6AP            | 14.4       | 22.15           | 10 | Big Creek                         | Pumps                  | MUNI                 |
| EDMONS 2 NSPIN                   |       | EDMON7AP            | 14.4       | 22.14           | 11 | Big Creek                         | Pumps                  | MUNI                 |
| EDMONS 2 NSPIN                   |       | EDMON7AP            | 14.4       | 22.14           | 12 | Big Creek                         | Pumps                  | MUNI                 |
| EDMONS 2 NSPIN                   |       | EDMON8AP            | 14.4       | 22.14           | 13 | Big Creek                         | Pumps                  | MUNI                 |
| EDMONS_2_NSPIN                   | -     | EDMON8AP            | 14.4       | 22.14           |    | Big Creek                         | Pumps                  | MUNI                 |
| GOLETA_2_QF                      |       | GOLETA              | 66         | 0.11            |    | Ventura, S.Clara,<br>Moorpark     | Not modeled Aug<br>NQC | QF/Selfgen           |
| GOLETA_6_ELLWOD                  | 28004 | ELLWOOD             | 13.8       | 54.00           | 1  | Ventura, S.Clara,<br>Moorpark     |                        | Market               |
| GOLETA_6_EXGEN                   | 24057 | GOLETA              | 66         | 1.45            |    | Ventura, S.Clara,<br>Moorpark     | Not modeled Aug<br>NQC | QF/Selfgen           |
| GOLETA_6_GAVOTA                  | 24057 | GOLETA              | 66         | 1.25            |    | Ventura, S.Clara,<br>Moorpark     | Not modeled Aug<br>NQC | QF/Selfgen           |
| GOLETA_6_TAJIGS                  |       | GOLETA              | 66         | 2.93            |    | Ventura, S.Clara,<br>Moorpark     | Not modeled Aug<br>NQC | Market               |
| KERRGN_1_UNIT 1                  |       | KERNRVR             | 66         | 13.67           | 1  | Big Creek                         | Aug NQC                | Market               |
| LEBECS_2_UNITS                   |       | PSTRIAG1            | 18         | 157.90          |    | Big Creek                         | Aug NQC                | Market               |
| LEBECS_2_UNITS                   |       | PSTRIAG2            | 18         | 157.90          |    | Big Creek                         | Aug NQC                | Market               |
| LEBECS_2_UNITS                   |       | PSTRIAS1            | 18         | 162.40          |    | Big Creek                         | Aug NQC                | Market               |
| LEBECS_2_UNITS                   |       | PSTRIAG3            | 18         | 157.90          |    | Big Creek                         | Aug NQC                | Market               |
| LEBECS_2_UNITS                   | 28055 | PSTRIAS2            | 18         | 78.90           | S2 | Big Creek                         | Aug NQC                | Market               |
| MNDALY_6_MCGRTH                  | 29306 | MCGPKGEN            | 13.8       | 47.20           | 1  | Ventura, S.Clara,<br>Moorpark     |                        | Market               |
| MNDALY_7_UNIT 1                  | 24089 | MANDLY1G            | 13.8       | 215.00          | 1  | Ventura,<br>Moorpark              |                        | Market               |
| MNDALY_7_UNIT 2                  | 24090 | MANDLY2G            | 13.8       | 215.29          | 2  | Ventura,<br>Moorpark              |                        | Market               |
| MNDALY_7_UNIT 3                  | 24222 | MANDLY3G            | 16         | 130.00          | 3  | Ventura, S.Clara,<br>Moorpark     |                        | Market               |
| MOORPK_2_CALABS                  | 24099 | MOORPARK            | 230        | 6.96            |    | Ventura,<br>Moorpark<br>Venture   | Not modeled            | Market               |
| MOORPK_6_QF                      | 24098 | MOORPARK            | 66         | 26.39           |    | Ventura,<br>Moorpark              | Not modeled Aug<br>NQC | QF/Selfgen           |
| MOORPK_7_UNITA1                  | 24098 | MOORPARK            | 66         | 1.65            |    | Ventura,<br>Moorpark              | Not modeled Aug<br>NQC | QF/Selfgen           |
| NEENCH_6_SOLAR                   |       | NEENACH             | 66         | 58.92           |    | Big Creek                         | Not modeled Aug<br>NQC | Market               |
| OMAR_2_UNIT 1                    |       | OMAR 1G             | 1          | 77.25           | 1  | Big Creek                         |                        | QF/Selfgen           |
| OMAR_2_UNIT 2                    |       | OMAR 2G             | 13.8       | 77.25           | 2  | Big Creek                         |                        | QF/Selfgen           |
| OMAR_2_UNIT 3                    |       | OMAR 3G             | 13.8       | 77.25           | 3  | Big Creek                         |                        | QF/Selfgen           |
| OMAR_2_UNIT 4<br>ORMOND_7_UNIT 1 |       | OMAR 4G<br>ORMOND1G | 13.8<br>26 | 77.25<br>741.27 | 4  | Big Creek<br>Ventura,<br>Moorpark |                        | QF/Selfgen<br>Market |
| ORMOND_7_UNIT 2                  | 24108 | ORMOND2G            | 26         | 775.00          | 2  | Moorpark<br>Ventura,<br>Moorpark  |                        | Market               |
| OSO 6 NSPIN                      | 25614 | OSO A P             | 13.2       | 2.13            | 1  | Big Creek                         | Pumps                  | MUNI                 |
| OSO_6_NSPIN                      | 1     | OSO A P             | 13.2       | 2.13            | 2  | Big Creek                         | Pumps                  | MUNI                 |
| OSO_6_NSPIN                      | 1     | OSO A P             | 13.2       | 2.13            | 3  | Big Creek                         | Pumps                  | MUNI                 |
| OSO_6_NSPIN                      |       | OSO A P             | 13.2       | 2.13            | 4  | Big Creek                         | Pumps                  | MUNI                 |
| OSO 6 NSPIN                      |       | OSO B P             | 13.2       | 2.13            | 5  | Big Creek                         | Pumps                  | MUNI                 |
| OSO_6_NSPIN                      | 1     | OSO B P             | 13.2       | 2.13            | 6  | Big Creek                         | Pumps                  | MUNI                 |
| OSO 6 NSPIN                      |       | OSO B P             | 13.2       | 2.13            | 7  | Big Creek                         | Pumps                  | MUNI                 |
| OSO_6_NSPIN                      |       | OSO B P             | 13.2       | 2.13            | 8  | Big Creek                         | Pumps                  | MUNI                 |

| PANDOL 6 UNIT                   | 24113 | PANDOL           | 13.8     | 25.70         | 1  | Big Creek, Vestal                      | Aug NQC                | QF/Selfgen           |
|---------------------------------|-------|------------------|----------|---------------|----|----------------------------------------|------------------------|----------------------|
| PANDOL_6_UNIT                   |       | PANDOL           | 13.8     | 20.94         | 2  | Big Creek, Vestal                      |                        | QF/Selfgen           |
| RECTOR_2_KAWEAH                 | 24212 | RECTOR           | 66       | 1.91          |    | Big Creek,<br>Rector, Vestal           | Not modeled Aug<br>NQC | Market               |
| RECTOR_2_KAWH 1                 | 24212 | RECTOR           | 66       | 1.04          |    | Big Creek,<br>Rector, Vestal           | Not modeled Aug<br>NQC | Market               |
| RECTOR_2_QF                     | 24212 | RECTOR           | 66       | 9.72          |    | Big Creek,<br>Rector, Vestal           | Not modeled Aug<br>NQC | QF/Selfgen           |
| RECTOR_7_TULARE                 | 24212 | RECTOR           | 66       | 0.49          |    | Big Creek,<br>Rector, Vestal           | Not modeled            | QF/Selfgen           |
| SAUGUS_2_TOLAND                 | 24135 | SAUGUS           | 66       | 0.00          |    | Big Creek                              | Not modeled Aug<br>NQC | Market               |
| SAUGUS_6_MWDFTH                 | 24135 | SAUGUS           | 66       | 8.13          |    | Big Creek                              | Not modeled Aug<br>NQC | MUNI                 |
| SAUGUS_6_PTCHGN                 | 24118 | PITCHGEN         | 13.8     | 19.01         | 1  | Big Creek                              | Aug NQC                | MUNI                 |
| SAUGUS_6_QF                     | 24135 | SAUGUS           | 66       | 0.88          |    | Big Creek                              | Not modeled Aug<br>NQC | QF/Selfgen           |
| SAUGUS_7_CHIQCN                 | 24135 | SAUGUS           | 66       | 2.21          |    | Big Creek                              | Not modeled Aug<br>NQC | Market               |
| SAUGUS_7_LOPEZ                  | 24135 | SAUGUS           | 66       | 5.21          |    | Big Creek                              | Not modeled Aug<br>NQC | QF/Selfgen           |
| SNCLRA_6_OXGEN                  | 24110 | OXGEN            | 13.8     | 34.62         | 1  | Ventura, S.Clara,<br>Moorpark          | Aug NQC                | QF/Selfgen           |
| SNCLRA_6_PROCGN                 | 24119 | PROCGEN          | 13.8     | 47.11         | 1  | Ventura, S.Clara,<br>Moorpark          | Aug NQC                | Market               |
| SNCLRA_6_QF                     | 24127 | S.CLARA          | 66       | 0.52          | 1  | Ventura, S.Clara,<br>Moorpark          | Aug NQC                | QF/Selfgen           |
| SNCLRA_6_WILLMT                 | 24159 | WILLAMET         | 13.8     | 12.56         | 1  | Ventura, S.Clara,<br>Moorpark          | Aug NQC                | QF/Selfgen           |
| SPRGVL_2_QF                     | 24215 | SPRINGVL         | 66       | 0.17          |    | Big Creek,<br>Rector, Vestal           | Not modeled Aug<br>NQC | QF/Selfgen           |
| SPRGVL_2_TULE                   | 24215 | SPRINGVL         | 66       | 0.93          |    | Big Creek,<br>Rector, Vestal           | Not modeled Aug<br>NQC | Market               |
| SPRGVL_2_TULESC                 | 24215 | SPRINGVL         | 66       | 0.20          |    | Big Creek,<br>Rector, Vestal           | Not modeled Aug<br>NQC | Market               |
| SYCAMR_2_UNITS                  | 24143 | SYCCYN1G         | 13.8     | 56.54         | 1  | Big Creek                              | Aug NQC                | QF/Selfgen           |
| SYCAMR_2_UNITS                  |       | SYCCYN2G         | 13.8     | 56.53         | 2  | Big Creek                              | Aug NQC                | QF/Selfgen           |
| SYCAMR_2_UNITS                  |       | SYCCYN3G         | 13.8     | 56.53         | 3  | Big Creek                              | Aug NQC                | QF/Selfgen           |
| SYCAMR_2_UNITS                  |       | SYCCYN4G         | 13.8     | 56.53         | 4  | Big Creek                              | Aug NQC                | QF/Selfgen           |
| TENGEN_2_PL1X2                  |       | TENNGEN1         | 13.8     | 18.18         | 1  | Big Creek                              | Aug NQC                | Market               |
| TENGEN_2_PL1X2                  |       | TENNGEN2         | 13.8     |               | 2  | Big Creek                              | Aug NQC                | Market               |
| VESTAL_2_KERN                   |       | VESTAL           | 66       | 16.63         | 1  | Big Creek, Vestal                      |                        | QF/Selfgen           |
| VESTAL_2_WELLHD_<br>VESTAL_6_QF |       | VESTAL<br>VESTAL | 66<br>66 | 49.00<br>7.51 |    | Big Creek, Vestal<br>Big Creek, Vestal | Not modeled Aug        | Market<br>QF/Selfgen |
| <br>VESTAL_6_ULTRGN             |       | ULTRAGEN         | 13.8     | 34.75         | 1  | Big Creek, Vestal                      | NQC                    | QF/Selfgen           |
| VESTAL 6 WDFIRE                 |       | LAKEGEN          | 13.8     | 7.00          | 1  | Big Creek, Vestal                      |                        | QF/Selfgen           |
| WARNE 2 UNIT                    |       | WARNE1           | 13.8     | 38.00         | 1  | Big Creek                              | Aug NQC                | Market               |
| WARNE_2_UNIT                    |       | WARNE2           | 13.8     | 38.00         | 1  | Big Creek                              | Aug NQC                | Market               |
| APPGEN_6_UNIT 1                 |       | APPGEN1G         | 13.8     | 0.00          | 1  | Big Creek                              | No NQC - hist. data    | Market               |
| APPGEN 6 UNIT 1                 |       | APPGEN2G         | 13.8     | 0.00          | 2  | Big Creek                              | No NQC - hist. data    | Market               |
| <br>NA                          |       | Exgen1           | 13.8     | 0.00          | S1 | Ventura, S.Clara,<br>Moorpark          | No NQC - hist. data    |                      |
| NA                              | 24340 | CHARMIN          | 13.8     | 15.20         | 1  | Ventura, S.Clara,<br>Moorpark          | No NQC - hist. data    | QF/Selfgen           |
| NA                              | 24362 | Exgen2           | 13.8     | 0.00          | G1 | Ventura, S.Clara,<br>Moorpark          | No NQC - hist. data    | QF/Selfgen           |
| NA                              | 24370 | Kawgen           | 13.8     | 0.00          | 1  | Big Creek,<br>Rector, Vestal           | No NQC - hist. data    | Market               |

| NA | 24372 | KR 3-1   | 13.8 | 0.00 | 1 | Big Creek, Vestal | No NQC - hist. data | QF/Selfgen |
|----|-------|----------|------|------|---|-------------------|---------------------|------------|
| NA | 24373 | KR 3-2   | 13.8 | 0.00 | 1 | Big Creek, Vestal | No NQC - hist. data | QF/Selfgen |
| NA | 24422 | PALMDALE | 66   | 0.00 | 1 | Big Creek         | No NQC - hist. data | Market     |

#### Major new projects modeled:

- 1. Tehachapi Transmission Project (phased in)
- 2. San Joaquin Cross Valley Loop
- 3. East Kern wind resource area project (Antelope system split)
- 4. New Rector-Springville 230 kV line

### Critical Contingency Analysis Summary

#### Rector Sub-area:

The most critical contingency is the loss of the Rector - Vestal 230 kV line with the Eastwood unit out of service, which could thermally overload the remaining Rector - Vestal 230 kV line. This limiting contingency establishes a local capacity need of 462 MW (includes 10 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Rector sub-area:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 24370   | KAWGEN   | 1      | 45           |
| 24319   | EASTWOOD | 1      | 41           |
| 24306   | B CRK1-1 | 1      | 41           |
| 24306   | B CRK1-1 | 2      | 41           |
| 24307   | B CRK1-2 | 3      | 41           |
| 24307   | B CRK1-2 | 4      | 41           |
| 24323   | PORTAL   | 1      | 41           |
| 24308   | B CRK2-1 | 1      | 40           |
| 24308   | B CRK2-1 | 2      | 40           |
| 24309   | B CRK2-2 | 3      | 40           |
| 24309   | B CRK2-2 | 4      | 40           |
| 24315   | B CRK 8  | 81     | 40           |
| 24315   | B CRK 8  | 82     | 40           |
| 24310   | B CRK2-3 | 5      | 39           |
| 24310   | B CRK2-3 | 6      | 39           |
| 24311   | B CRK3-1 | 1      | 39           |

| 24311 | B CRK3-1 | 2  | 39 |
|-------|----------|----|----|
| 24312 | B CRK3-2 | 3  | 39 |
| 24312 | B CRK3-2 | 4  | 39 |
| 24313 | B CRK3-3 | 5  | 39 |
| 24317 | MAMOTH1G | 1  | 39 |
| 24318 | MAMOTH2G | 2  | 39 |
| 24314 | B CRK 4  | 41 | 38 |
| 24314 | B CRK 4  | 42 | 38 |

### Vestal Sub-area:

The most critical contingency is the loss of the Magunden - Vestal 230 kV line with the Eastwood unit out of service, which could thermally overload the remaining Magunden - Vestal 230 kV line. This limiting contingency establishes a local capacity need of 633 MW (includes 123 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

### Effectiveness factors:

The following table has units that have at least 5% effectiveness to the abovementioned constraint within Vestal sub-area:

| Gen Bus | Gen Name | Gen ID | Eff Fctr (%) |
|---------|----------|--------|--------------|
| 28008   | LAKEGEN  | 1      | 46           |
| 24113   | PANDOL   | 1      | 45           |
| 24113   | PANDOL   | 2      | 45           |
| 24150   | ULTRAGEN | 1      | 45           |
| 24372   | KR 3-1   | 1      | 45           |
| 24373   | KR 3-2   | 2      | 45           |
| 24152   | VESTAL   | 1      | 45           |
| 24370   | KAWGEN   | 1      | 45           |
| 24319   | EASTWOOD | 1      | 24           |
| 24306   | B CRK1-1 | 1      | 24           |
| 24306   | B CRK1-1 | 2      | 24           |
| 24307   | B CRK1-2 | 3      | 24           |
| 24307   | B CRK1-2 | 4      | 24           |
| 24308   | B CRK2-1 | 1      | 24           |
| 24308   | B CRK2-1 | 2      | 24           |
| 24309   | B CRK2-2 | 3      | 24           |
| 24309   | B CRK2-2 | 4      | 24           |
| 24310   | B CRK2-3 | 5      | 24           |
| 24310   | B CRK2-3 | 6      | 24           |
| 24315   | B CRK 8  | 81     | 24           |
| 24315   | B CRK 8  | 82     | 24           |
| 24323   | PORTAL   | 1      | 24           |
| 24311   | B CRK3-1 | 1      | 23           |
| 24311   | B CRK3-1 | 2      | 23           |

| 24312 | B CRK3-2 | 3  | 23 |
|-------|----------|----|----|
| 24312 | B CRK3-2 | 4  | 23 |
| 24313 | B CRK3-3 | 5  | 23 |
| 24317 | MAMOTH1G | 1  | 23 |
| 24318 | MAMOTH2G | 2  | 23 |
| 24314 | B CRK 4  | 41 | 22 |
| 24314 | B CRK 4  | 42 | 22 |

#### Santa Clara Sub-area:

The most critical contingency is the loss of the Pardee - Santa Clara 230 kV line followed by the loss of Moorpark - Santa Clara 230 kV #1 and #2 lines, which would cause voltage collapse. This limiting contingency establishes a local capacity need of 304 MW (includes 66 MW QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this area have the same effectiveness factor.

### Moorpark Sub-area:

The most critical contingency is the loss of the Moorpark - Pardee 230 kV #3 line followed by the loss of the Moorpark - Pardee 230 kV #1 and #2 lines, which will cause voltage collapse. This limiting contingency establishes a local capacity need of 618 MW (includes 94 MW QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

#### **Effectiveness factors:**

All units within this area have the same effectiveness factor.

## Big Creek/Ventura overall:

The most critical contingency is the loss of the Lugo - Victorville 500 kV line followed by loss of one of the Sylmar - Pardee 230 kV line, which would thermally overload the remaining Sylmar - Pardee 230 kV line. This limiting contingency establishes a local capacity need of 2688 MW (includes 758 MW of QF and 354 MW of MUNI generation) as the minimum capacity necessary for reliable load serving capability within this area.

The single most critical contingency is the loss of Sylmar - Pardee #1 (or # 2) line with Ormond #2 unit out of service, which could thermally overload the remaining Sylmar -Pardee #1 or #2 230 kV line. This limiting contingency establishes a Local Capacity Need of 2397MW (includes 758 MW of QF and 354 MW of MUNI generation).

### Effectiveness factors:

The following table has effectiveness factors to the most critical contingency.

| Gen Bus | Gen Name | Ck | Eff Factor (%) |
|---------|----------|----|----------------|
| 24108   | ORMOND2G | 1  | 40             |
| 24010   | APPGEN2G | 1  | 39             |
| 24148   | TENNGEN1 | 1  | 39             |
| 24149   | TENNGEN2 | 1  | 39             |
| 24009   | APPGEN1G | 1  | 38             |
| 24107   | ORMOND1G | 1  | 38             |
| 24118   | PITCHGEN | 1  | 38             |
| 24361   | APPGEN3G | 1  | 38             |
| 25651   | WARNE1   | 1  | 37             |
| 25652   | WARNE2   | 1  | 37             |
| 24089   | MANDLY1G | 1  | 36             |
| 24090   | MANDLY2G | 1  | 36             |
| 24127   | S.CLARA  | 1  | 36             |
| 29004   | ELLWOOD  | 1  | 36             |
| 24110   | OXGEN    | 1  | 36             |
| 24119   | PROCGEN  | 1  | 36             |
| 24159   | WILLAMET | 1  | 36             |
| 24340   | CHARMIN  | 1  | 36             |
| 29952   | CAMGEN   | 1  | 36             |
| 24362   | EXGEN2   | 1  | 36             |
| 24326   | EXGEN1   | 1  | 36             |
| 24362   | EXGEN2   | 1  | 36             |
| 24222   | MANDLY3G | 1  | 35             |
| 25614   | OSO A P  | 1  | 35             |
| 25614   | OSO A P  | 1  | 35             |
| 25615   | OSO B P  | 1  | 35             |
| 25615   | OSO B P  | 1  | 35             |
| 29306   | MCGPKGEN | 1  | 35             |
| 29055   | PSTRIAS2 | 1  | 34             |
| 29054   | PSTRIAG3 | 1  | 34             |
| 29053   | PSTRIAS1 | 1  | 34             |

| 29052 | PSTRIAG2 | 1 | 34 |
|-------|----------|---|----|
| 29051 | PSTRIAG1 | 1 | 34 |
| 25605 | EDMON1AP | 1 | 34 |
| 25606 | EDMON2AP | 1 | 34 |
| 25607 | EDMON3AP | 1 | 34 |
| 25607 | EDMON3AP | 1 | 34 |
| 25608 | EDMON4AP | 1 | 34 |
| 25608 | EDMON4AP | 1 | 34 |
| 25609 | EDMON5AP | 1 | 34 |
| 25609 | EDMON5AP | 1 | 34 |
| 25610 | EDMON6AP | 1 | 34 |
| 25610 | EDMON6AP | 1 | 34 |
| 25611 | EDMON7AP | 1 | 34 |
| 25611 | EDMON7AP | 1 | 34 |
| 25612 | EDMON8AP | 1 | 34 |
| 25612 | EDMON8AP | 1 | 34 |
| 25653 | ALAMO SC | 1 | 34 |
| 24370 | KAWGEN   | 1 | 32 |
| 24113 | PANDOL   | 1 | 31 |
| 24113 | PANDOL   | 1 | 31 |
| 29008 | LAKEGEN  | 1 | 31 |
| 24150 | ULTRAGEN | 1 | 31 |
| 24152 | VESTAL   | 1 | 31 |
| 24307 | B CRK1-2 | 1 | 31 |
| 24307 | B CRK1-2 | 1 | 31 |
| 24308 | B CRK2-1 | 1 | 31 |
| 24308 | B CRK2-1 | 1 | 31 |
| 24309 | B CRK2-2 | 1 | 31 |
| 24309 | B CRK2-2 | 1 | 31 |
| 24310 | B CRK2-3 | 1 | 31 |
| 24310 | B CRK2-3 | 1 | 31 |
| 24311 | B CRK3-1 | 1 | 31 |
| 24311 | B CRK3-1 | 1 | 31 |
| 24312 | B CRK3-2 | 1 | 31 |
| 24312 | B CRK3-2 | 1 | 31 |
| 24313 | B CRK3-3 | 1 | 31 |
| 24314 | B CRK 4  | 1 | 31 |
| 24314 | B CRK 4  | 1 | 31 |
| 24315 | B CRK 8  | 1 | 31 |
| 24315 | B CRK 8  | 1 | 31 |
| 24317 | MAMOTH1G | 1 | 31 |
| 24318 | MAMOTH2G | 1 | 31 |
| 24372 | KR 3-1   | 1 | 31 |
|       |          |   |    |

| 24373 | KR 3-2   | 1 | 31 |
|-------|----------|---|----|
| 24102 | OMAR 1G  | 1 | 30 |
| 24103 | OMAR 2G  | 1 | 30 |
| 24104 | OMAR 3G  | 1 | 30 |
| 24105 | OMAR 4G  | 1 | 30 |
| 24143 | SYCCYN1G | 1 | 30 |
| 24144 | SYCCYN2G | 1 | 30 |
| 24145 | SYCCYN3G | 1 | 30 |
| 24146 | SYCCYN4G | 1 | 30 |
| 24319 | EASTWOOD | 1 | 30 |
| 24306 | B CRK1-1 | 1 | 30 |
| 24306 | B CRK1-1 | 1 | 30 |
| 24136 | SEAWEST  | 1 | 9  |
| 24437 | KERNRVR  | 1 | 8  |

#### Changes compared to last year's results:

Compared with 2017 the load forecast went up by 182 MW and the LCR need has increased by 131 MW.

# Big Creek/Ventura Overall Requirements:

|     |                    | QF<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying<br>Capacity (MW) |
|-----|--------------------|------------|--------------|----------------|----------------------------------|
| Ava | ailable generation | 758        | 354          | 4206           | 5318                             |

| 2018                                | Existing Generation  | Deficiency | Total MW    |  |
|-------------------------------------|----------------------|------------|-------------|--|
|                                     | Capacity Needed (MW) | (MW)       | Requirement |  |
| Category B (Single) <sup>21</sup>   | 2397                 | 0          | 2397        |  |
| Category C (Multiple) <sup>22</sup> | 2668                 | 0          | 2668        |  |

<sup>&</sup>lt;sup>21</sup> A single contingency means that the system will be able the survive the loss of a single element,

however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>22</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

## 10. Greater San Diego-Imperial Valley Area

### Area Definition

The transmission tie lines forming a boundary around the Greater San Diego-Imperial

Valley area include:

- 1) Imperial Valley North Gila 500 kV Line
- 2) Otay Mesa Tijuana 230 kV Line
- 3) San Onofre San Luis Rey #1 230 kV Line
- 4) San Onofre San Luis Rey #2 230 kV Line
- 5) San Onofre San Luis Rey #3 230 kV Line
- 6) San Onofre Talega 230 kV Line
- 7) San Onofre Capistrano 230 kV Line
- 8) Imperial Valley El Centro 230 kV Line
- 9) Imperial Valley Dixieland 230 kV Line
- 10) Imperial Valley La Rosita 230 kV Line

The substations that delineate the Greater San Diego-Imperial Valley area are:

- 1) Imperial Valley is in North Gila is out
- 2) Otay Mesa is in Tijuana is out
- 3) San Onofre is out San Luis Rey is in
- 4) San Onofre is out San Luis Rey is in
- 5) San Onofre is out San Luis Rey is in
- 6) San Onofre is out Talega is in
- 7) San Onofre is out Talega is in
- 8) Imperial Valley is in El Centro is out
- 9) Imperial Valley is in Dixieland is out
- 10) Imperial Valley is in La Rosita is out

Total 2018 busload within the defined area: 5,497 MW with 166 MW of losses resulting

in total load + losses of 5,663 MW.

| MKT/SCHED<br>RESOURCE ID | BUS # | BUS NAME | kV   | NQC   |   | LCR SUB-AREA<br>NAME | NQC Comments           | CAISO<br>Tag |
|--------------------------|-------|----------|------|-------|---|----------------------|------------------------|--------------|
| BORDER_6_UNITA1          | 22149 | CALPK_BD | 13.8 | 45.00 | 1 | San Diego, Border    |                        | Market       |
| BREGGO_6_SOLAR           | 22082 | BR GEN1  | 0.21 | 23.21 | 1 | San Diego            | Aug NQC                | Market       |
| CBRLLO_6_PLSTP1          | 22092 | CABRILLO | 69   | 2.66  | 1 | San Diego            | Aug NQC                | QF/Selfgen   |
| CCRITA_7_RPPCHF          | 22124 | CHCARITA | 138  | 3.63  | 1 | San Diego            | Aug NQC                | QF/Selfgen   |
| CHILLS_1_SYCENG          | 22120 | CARLTNHS | 138  | 0.00  | 1 | San Diego            | Aug NQC                | QF/Selfgen   |
| CHILLS_1_SYCLFL          | 22120 | CARLTNHS | 138  | 0.43  |   | San Diego            | Not modeled Aug<br>NQC | QF/Selfgen   |
| CHILLS_7_UNITA1          | 22120 | CARLTNHS | 138  | 1.54  | 2 | San Diego            | Aug NQC                | QF/Selfgen   |
| CPSTNO_7_PRMADS          | 22112 | CAPSTRNO | 138  | 4.99  | 1 | San Diego            | Aug NQC                | QF/Selfgen   |
| CRSTWD_6_KUMYAY          | 22915 | KUMEYAAY | 34.5 | 7.55  | 1 | San Diego            | Aug NQC                | Wind         |

Total units and qualifying capacity available in this area:

| DIVSON_6_NSQF   | 22172 | DIVISION    | 69   | 41.95  | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
|-----------------|-------|-------------|------|--------|---|-----------------------------------|------------------------|------------|
| EGATE_7_NOCITY  |       | EASTGATE    | 69   | 0.27   | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
| ELCAJN 6 LM6K   |       | EC GEN2     | 13.8 |        | 1 | San Diego, El Cajon               |                        | Market     |
| ELCAJN 6 UNITA1 |       | EC GEN1     | 13.8 |        | 1 | San Diego, El Cajon               |                        | Market     |
| ENCINA_7_EA1    |       | ENCINA 1    |      | 106.00 | 1 | San Diego, Encina                 |                        | Market     |
| ENCINA 7 EA2    |       | ENCINA 2    |      | 104.00 | 1 | San Diego, Encina                 |                        | Market     |
| ENCINA 7 EA3    |       | ENCINA 3    | 14.4 | 110.00 | 1 | San Diego, Encina                 |                        | Market     |
| ENCINA 7 EA4    |       | ENCINA 4    |      | 300.00 | 1 | San Diego, Encina                 |                        | Market     |
| ENCINA_7_EA5    | 22244 | ENCINA 5    | 24   | 330.00 | 1 | San Diego, Encina                 |                        | Market     |
| ENCINA_7_GT1    | 22248 | ENCINAGT    | 12.5 | 14.50  | 1 | San Diego, Encina                 |                        | Market     |
| ESCNDO_6_PL1X2  | 22257 | ESGEN       | 13.8 | 35.50  | 1 | San Diego,<br>Escondido           |                        | Market     |
| ESCNDO_6_UNITB1 | 22153 | CALPK_ES    | 13.8 | 45.00  | 1 | San Diego,<br>Escondido           |                        | Market     |
| ESCO_6_GLMQF    | 22332 | GOALLINE    | 69   | 37.32  | 1 | San Diego, Esco,<br>Escondido     | Aug NQC                | QF/Selfgen |
| LAKHDG_6_UNIT 1 | 22625 | LKHODG1     | 13.8 | 20.00  | 1 | San Diego,<br>Bernardo, Encinitas |                        | Market     |
| LAKHDG_6_UNIT 2 | 22626 | LKHODG2     | 13.8 | 20.00  | 2 | San Diego,<br>Bernardo, Encinitas |                        | Market     |
| LARKSP 6 UNIT 1 | 22074 | LRKSPBD1    | 13.8 | 46.00  | 1 | San Diego, Border                 |                        | Market     |
| LARKSP_6_UNIT 2 |       | LRKSPBD2    | 13.8 | 46.00  | 1 | San Diego, Border                 |                        | Market     |
| LAROA1_2_UNITA1 |       | LRP-U1      | 16   | 165    | 1 | None                              |                        | Market     |
| LAROA2_2_UNITA1 |       | INTBST      | 18   | 157    | 1 | None                              |                        | Market     |
| LAROA2_2_UNITA1 |       | INTBCT      | 16   | 165    | 1 | None                              |                        | Market     |
| MRGT_6_MEF2     |       | MEF MR2     | 13.8 |        | 1 | San Diego, Mission,               |                        | Market     |
| MRGT_6_MMAREF   |       | <br>MEF_MR1 | 13.8 |        | 1 | Miramar<br>San Diego, Mission,    |                        | Market     |
|                 |       | —           |      |        | 4 | Miramar                           |                        |            |
| MSHGTS_6_MMARLF |       |             | 69   | 3.30   | 1 | San Diego, Mission                | Aug NQC                | QF/Selfgen |
| MSSION_2_QF     |       | MISSION     | 69   | 0.73   | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
| NIMTG_6_NIQF    |       | NOISLMTR    | 69   | 36.76  | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
| OGROVE_6_PL1X2  |       | PA99MWQ1    | 13.8 |        | 1 | San Diego, Pala                   |                        | Market     |
| OGROVE_6_PL1X2  |       | PA99MWQ2    | 13.8 |        | 2 | San Diego, Pala                   |                        | Market     |
| OTAY_6_PL1X2    |       | OYGEN       | 13.8 |        | 1 | San Diego, Border                 |                        | Market     |
| OTAY_6_UNITB1   |       | ΟΤΑΥ        | 69   | 2.79   | 1 | San Diego, Border                 | Aug NQC                | QF/Selfgen |
| OTAY_7_UNITC1   |       | ΟΤΑΥ        | 69   | 2.68   | 3 | San Diego, Border                 | Aug NQC                | QF/Selfgen |
| OTMESA_2_PL1X3  |       | OTAYMGT1    | 18   | 185.06 | 1 | San Diego                         |                        | Market     |
| OTMESA_2_PL1X3  |       | OTAYMGT2    | 18   | 185.06 | 1 | San Diego                         |                        | Market     |
| OTMESA_2_PL1X3  | 22607 | OTAYMST1    | 16   | 233.48 | 1 | San Diego                         |                        | Market     |
| PALOMR_2_PL1X3  | 22262 | PEN_CT1     | 18   | 162.39 | 1 | San Diego                         |                        | Market     |
| PALOMR 2 PL1X3  | 22263 | PEN CT2     | 18   | 162.39 | 1 | San Diego                         |                        | Market     |
| PALOMR 2 PL1X3  |       | PEN ST      | 18   | 240.83 | 1 | San Diego                         |                        | Market     |
|                 |       | POINTLMA    | 69   | 1.86   | 2 | San Diego                         | Aug NQC                | QF/Selfgen |
| PTLOMA_6_NTCQF  |       | POINTLMA    | 69   | 19.44  | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
| SAMPSN_6_KELCO1 |       | SAMPSON     | 12.5 | 1.43   | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
| SMRCOS 6 UNIT 1 |       | SANMRCOS    | 69   | 0.65   | 1 | San Diego                         | Aug NQC                | QF/Selfgen |
| TERMEX 2 PL1X3  |       | TDM STG     | 18   | 281    | 1 | None                              | ~                      | Market     |
| TERMEX_2_PL1X3  |       | TDM CTG2    | 18   | 156    | 1 | None                              |                        | Market     |
| TERMEX 2 PL1X3  |       | TDM CTG2    | 18   | 156    | 1 | None                              |                        | Market     |
| NA              |       | MESA RIM    | 69   | 0.00   | 1 | San Diego                         | No NQC - hist.<br>data | QF/Selfgen |
|                 | 22774 |             | 03   |        |   |                                   | No NQC - hist.         |            |
| NA              | 22592 | OLD TOWN    | 69   | 0.00   | 1 | San Diego                         | data<br>No NQC - hist. | QF/Selfgen |
| NA              |       | OMWD        | 69   | 0.00   |   | San Diego                         | data                   | QF/Selfgen |
| NA              | 22708 | SANLUSRY    | 69   | 0.00   | 1 | San Diego                         | No NQC - hist.         | QF/Selfgen |

|                              |       |                      |              |        |    |                                           | data                   |                  |
|------------------------------|-------|----------------------|--------------|--------|----|-------------------------------------------|------------------------|------------------|
| NA                           | 22916 | PFC-AVC              | 0.6          | 0.00   | 1  | San Diego                                 | No NQC - hist.<br>data | QF/Selfgen       |
| New unit                     | 22942 | RPS                  | 0.69         | 15.00  | G1 | None                                      | No NQC - est. data     | Wind             |
| New unit                     | 22945 | RPS                  | 0.69         | 15.00  | G2 | None                                      | No NQC - est. data     | Wind             |
| New unit                     | 23120 | BULLMOOS             | 13.8         | 27.00  | 1  | San Diego, Border                         | No NQC - Pmax          | Market           |
| New unit                     | 23262 | RPS                  | 0.32         | 290.00 | Т  | None                                      | No NQC - Pmax          | Market           |
| New unit                     | 23265 | RPS                  | 32.5         | 45.00  | C3 | None                                      | No NQC - Pmax          | Market           |
| New unit                     | 23265 | RPS                  | 32.5         | 125.00 | Т  | None                                      | No NQC - Pmax          | Market           |
| New unit                     | 23279 | RPS                  | 0.31         | 100.00 | 1  | None                                      | No NQC - Pmax          | Market           |
| New unit                     | 23280 | RPS                  | 0.31         | 100.00 | 1  | None                                      | No NQC - Pmax          | Market           |
| New unit                     | 22245 | COSTAL 2             | 13.8         | 70.00  | 1  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     | 22246 | COSTAL 2             | 16.5         | 190.00 | 0  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     | 22895 | RPS                  | 0.69         | 3.00   | Q  | None                                      | No NQC - est. data     | Wind             |
| New unit                     | 22907 | RPS                  | 0.69         | 3.00   | Q  | None                                      | No NQC - est. data     | Wind             |
| New unit                     | 22908 | RPS                  | 0.69         | 3.00   | Q  | None                                      | No NQC - est. data     | Wind             |
| New unit                     |       | COSTAL 1             | 16.5         | 190.00 | 1  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     | 22929 | COSTAL 1             | 13.8         | 70.00  | 1  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     | 23053 |                      | 0.69         | 3.00   | Q  | None                                      | No NQC - est. data     | Wind             |
| New unit                     | 23054 |                      | 0.69         | 3.00   | Q  | None                                      | No NQC - est. data     | Wind             |
| New unit                     | 23055 |                      | 0.69         | 3.00   | Q  | None                                      | No NQC - est. data     | Wind             |
| New unit                     |       | Q565 G               | 13.8         | 9.09   | 1  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565 G               | 13.8         | 9.09   | 2  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565 G               | 13.8         | 9.09   | 3  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565 G               | 13.8         | 9.09   | 4  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565 G               | 13.8         | 9.09   | -  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565 G               | 13.8         | 9.09   |    | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565 G               | 13.8         | 9.09   | 7  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565_0               | 13.8         | 9.09   | 8  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565_0               | 13.8         | 9.09   | 9  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565_G               | 13.8         | 9.09   | -  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | Q565_G               | 13.8         | 9.09   |    | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | C574CT1              |              | 103.00 | 1  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     |       | C574CT2              |              | 103.00 | 1  | San Diego                                 | No NQC - Pmax          | Market           |
|                              |       | C574CT2              |              | 102.00 | 1  | San Diego                                 | No NQC - Pmax          | Market           |
| New unit                     | -     |                      |              |        |    | -                                         |                        |                  |
| New unit                     | 1     | Q124_G1              |              | 33.30  |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | Q124_G2              | 0.2          | 33.30  |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | Q124_G3              | 0.2          | 33.30  |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | Q124_G4              | 0.2          | 33.30  |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | Q124_G5              | 0.2          | 33.30  |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | Q124_G6              | 0.2          | 33.30  |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | C510_1               |              | 130.00 |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | C590_G1              |              | 150.00 |    | None                                      | No NQC - Pmax          | Market           |
| New unit                     |       | OCO GEN G1           |              |        |    | None                                      | No NQC - est. data     |                  |
| New unit                     |       | OCO GEN G2           |              |        |    | None<br>San Diago, El Cajon               | No NQC - est. data     |                  |
| ELCAJN_7_GT1<br>KEARNY_7_KY1 |       | ELCAJNGT<br>KEARNGT1 | 12.5<br>12.5 |        | 1  | San Diego, El Cajon<br>San Diego, Mission | Retired<br>Retired     | Market<br>Market |
| KEARNY 7 KY2                 |       | KEARN2AB             | 12.5         | 0.00   | 1  | San Diego, Mission                        | Retired                | Market           |
| KEARNY_7_KY2                 |       | KEARN2AB             | 12.5         | 0.00   | 2  | San Diego, Mission                        | Retired                | Market           |
| KEARNY_7_KY2                 |       | KEARN2CD             | 12.5         | 0.00   |    | San Diego, Mission                        | Retired                | Market           |
| KEARNY_7_KY2                 |       | KEARN2CD             | 12.5         | 0.00   |    | San Diego, Mission                        | Retired                | Market           |
| KEARNY_7_KY3                 |       | KEARN3AB             | 12.5         | 0.00   | 1  | San Diego, Mission                        | Retired                | Market           |
| KEARNY_7_KY3                 | 22375 | KEARN3AB             | 12.5         | 0.00   | 2  | San Diego, Mission                        | Retired                | Market           |

| KEARNY_7_KY3 | 22376 | KEARN3CD | 12.5 | 0.00 | 1 | San Diego, Mission             | Retired | Market |
|--------------|-------|----------|------|------|---|--------------------------------|---------|--------|
| KEARNY_7_KY3 | 22376 | KEARN3CD | 12.5 | 0.00 | 2 | San Diego, Mission             | Retired | Market |
| MRGT_7_UNITS | 22488 | MIRAMRGT | 12.5 | 0.00 |   | San Diego, Mission,<br>Miramar | Retired | Market |
| MRGT_7_UNITS | 22488 | MIRAMRGT | 12.5 | 0.00 |   | San Diego, Mission,<br>Miramar | Retired | Market |

#### Major new projects modeled:

- 1. Reconductor of El Cajon Los Coches 69 kV line
- 2. Reconductor of Mission Clairmont 69 kV line
- 3. Reconductor of Mission Kearny 69 kV line
- 4. Reconductor of Mission Mesa Heights 69 kV line
- 5. A new Sycamore Bernardo 69 kV line
- 6. East County 500kV Substation (ECO)
- 7. Reconductor Bernardo-Rancho Carmel 69 kV line
- 8. Reconductor of Sycamore Chicarita 138 kV line

## Critical Contingency Analysis Summary

#### El Cajon Sub-area

This sub-area is eliminated due to an approved project to reconductor El Cajon – Los Coches 69 kV line (approved in 2011-2012 planning cycle with a target in-service date of 2014).

#### **Mission Sub-area**

Reconductoring projects for the Mission – Clairmont (TL670), Mission – Kearny (TL663) and Mission Mesa Heights (TL676) 69 kV lines were approved in 2010-2011 planning cycle (expected in-service date – 2015). These transmission projects will eliminate the local capacity need in this sub-area.

#### Bernardo Sub-area

A transmission project to build a new Sycamore – Bernardo 69kV line (expected to be in-service in 2015) was approved in 2010-2011 planning cycle. This transmission project will eliminate the local capacity need in this sub-area.

## Encinitas Sub-area

The most critical contingency for the Encinitas sub-area is the loss of Escondido – OMWD 69kV line (TL6930) followed by the loss of North City - Penasquitos 69 kV line (TL6952), which could thermally overload the Encinitas – Del Mar 69kV line (TL660). This limiting contingency establishes a local capacity need of 20 MW in 2018 (includes 0 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

The only units within this area (Lake Hodges) are needed therefore no effectiveness factor is required.

# Esco Sub-area

The most critical contingency for the Esco sub-area is the loss of Poway-Pomerado 69 kV line (TL6913) followed by the loss of Bernardo – Rancho Carmel 69 kV line, which could thermally overload the Esco-Escondido 69kV line (TL6908). This limiting contingency establishes a local capacity need of 65 MW in 2018 (includes 37 MW of QF generation and 28 MW deficiency) as the minimum capacity necessary for reliable load serving capability within this sub-area.

# **Effectiveness factors:**

The only unit within this area (Goal line) is needed therefore no effectiveness factor is required.

# Escondido Sub-area

Reconductor project for the Bernardo – Rancho Carmel 69 kV line was approved in 2011-2012 planning cycle (expected in-service date – 2015). This transmission project will eliminate the local capacity need in this sub-area.

# Pala Sub-area

The most critical contingency for the Pala sub-area is the loss of Pendleton – San Luis Rey 69kV line (TL6912) followed by the loss of Lilac - Pala 69kV line (TL6932), which could thermally overload the Monserate – Morro Hill Tap 69 kV line (TL694). This limiting contingency establishes a local capacity need of 58 MW in 2018 (includes 0 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

All units within this area (Orange Grove peakers) have the same effectiveness factor.

## Border Sub-area

The most critical contingency for the Border sub-area is the loss of Bay Boulevard – Otay 69kV line #1 (TL645) followed by Bay Boulevard Otay – 69kV line #2 (TL646), which could thermally overload the Imperial Beach – Bay Boulevard 69 kV line (TL647). This limiting contingency establishes a local capacity need of 55 MW in 2018 (includes 5 MW of QF generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

# Effectiveness factors:

All units within this area have the same effectiveness factor.

# Encina Sub-area

Reconductor of Sycamore – Chicarita 138kV line was approved in the 2012-2013 transmission planning cycle. This project will eliminate the local need in this sub-area.

# Miramar Sub-area

The most critical contingency for the Miramar Sub-area is the loss of Otay Mesa-Miguel Tap-South Bay 230 kV line followed by the loss of Sycamore-Elliott 69 kV line which could thermally overload the Sycamore-Scripps 69 kV line (TL6916). This limiting contingency establishes a local capacity need of 98 MW (including 0 MW of QF generation and 2 MW deficiency) in 2018 as the minimum capacity necessary for

reliable load serving capability within this sub-area. The deficiency arises due to assumed retirement of 2 existing Miramar GT's. It is recommended to retain the Miramar GTs (Cabrillo Power II) until the most limiting contingency is mitigated.

### **Effectiveness factors:**

All units within this area (Miramar Energy Facility #1 and #2) have the same effectiveness factor.

### San Diego Sub-area:

The most limiting contingency in the San Diego sub-area is the loss of Miguel–ECO 500 kV line with Otay Mesa combined-cycle power plant (603 MW) out of service. The limiting constraint is reactive margin. This limiting contingency establishes a local capacity need of 2,893 MW in 2018 (includes 162 MW of QF and 8 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this sub-area.

The second most limiting contingency in the San Diego sub-area is the N-1-1 contingency of Ocotillo – Suncrest 500 kV line followed by the contingency of Miguel – ECO 500 kV line or vice versa. The limiting constraint is reactive margin. This limiting contingency establishes a local capacity need of 2,790 MW in 2018 (includes 162 MW of QF and 8 MW of wind generation).

## **Effectiveness factors:**

All units within this area have the same effectiveness factor. Units outside of this area are not effective.

## Greater San Diego-Imperial Valley overall:

The most limiting contingency in the Greater Imperial Valley-San Diego area is the outage of 500 kV Southwest Power Link (SWPL) between Imperial Valley and N. Gila Substations over-lapping with an outage of the Otay Mesa Combined-Cycle Power plant (603 MW) while staying within the South of San Onofre (WECC Path 44) non-

simultaneous import capability rating of 2,500 MW. This limiting contingency establishes a local capacity need of 3,310 MW in 2018 (includes 162 MW of QF and 100 MW of wind generation) as the minimum capacity necessary for reliable load serving capability within this area.

As mentioned in the study assumptions, IID's proposed Dixieland 230 kV substation and the new Imperial Valley-Dixieland 230 kV line was modeled in the 2018 base case. The CAISO acknowledges that the LCR needs for the Greater San Diego-Imperial Valley area will decrease as additional transmission is constructed between the IID/CFE systems and Imperial Valley and more power is flowing in real-time from these control areas into the CAISO control area. If and when the San Diego internal requirements exceed the Greater Imperial Valley/San Diego area requirements, the local boundary could be moved back to the 2012 definition.

## Effectiveness factors:

All units within this area have the same effectiveness factor.

# Changes compared to last year's results:

Compared with 2017 the load forecast went up by 157 MW and the LCR need has increased by about 185 MW.

|                      | QF   | Wind | Market | Max. Qualifying |
|----------------------|------|------|--------|-----------------|
|                      | (MW) | (MW) | (MW)   | Capacity (MW)   |
| Available generation | 162  | 100  | 5914   | 6176            |

| 2018                                | Existing Generation Capacity<br>Needed (MW) |    | Total MW<br>Requirement |
|-------------------------------------|---------------------------------------------|----|-------------------------|
| Category B (Single) <sup>23</sup>   | 3310                                        | 0  | 3310                    |
| Category C (Multiple) <sup>24</sup> | 3310                                        | 30 | 3340                    |

<sup>&</sup>lt;sup>23</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

## 11. Valley Electric Area

### Area Definition

The transmission tie lines into the area include:

- 1) Amargosa-Sandy 138 kV line
- 2) Jackass Flats-Lathrop Switch 138 kV line
- 3) Mead-Bob Switchyard 230 kV line
- 4) Northwest-Desert View 230 kV line
- 5) Innovation-Mercury 138 kV line
- 6) Bob Switchyard-SCE Eldorado 230 kV line

The substations that delineate the area are:

- 1) Amargosa is out Sandy is in
- 2) Jackass Flats is out Lathrop Switch is in
- 3) Mead is out Bob Switchyard is in
- 4) Northwest is out Desert View is in
- 5) Mercury is out Innovation is in
- 6) SCE Eldorado is out Bob Switchyard is in

Total 2018 busload within the defined area was: 125 MW along with 3 MW of

transmission losses resulting in total load + losses of 128 MW.

There is no generation and qualifying capacity available in this area.

#### Major new transmission projects modeled:

- 1. Northwest-Desert View 230 kV Line #1 (completed in 2012)
- 2. Desert View-Pahrump 230 kV line #1 (completed in January 2013)
- 3. SCE Eldorado-Bob Switchyard 230 kV Line #1
- 4. Bob Switchyard 230 kV Switchyard
- 5. Innovation-Mercury 138 kV line

<sup>&</sup>lt;sup>24</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

- 6. Innovation 230 kV Switchyard
- 7. Charleston-Vista 138 kV line

## Critical Contingency Analysis Summary

### Pahrump South Sub-Area

The most critical contingency is the loss of the Pahrump-Gamebird 138 kV line followed by loss of the Charleston-Vista 138 kV line. This Category C contingency results in voltage lower than 0.90 pu at Charleston, Thousandaire sub, and Gamebird sub and establishes a local capacity need of 12 MW (including 12 MW of deficiency) in 2018 as minimum capacity necessary for reliable load serving capability within this sub-area.

## **Effectiveness factors:**

There is no generation available in this sub-area.

# Valley Electric Association Overall Area

The most critical contingency for the Valley Electric Association Area is the loss of Crazy Eye-Pahrump 230 kV line followed by the loss of Northwest-Desert View 230 kV line. This double contingency event results in both voltage lower than 0.90 pu and thermal overload in the 138 kV system from Northwest to Mercury in Nevada Energy Balancing Authority area, and establishes a local capacity need of 42 MW (including 42 MW of deficiency) in 2018 as the minimum capacity necessary for reliable load serving capability within the area.

## Effectiveness factors:

There is no generation available in this area.

## Changes compared to last year's results:

Compared with 2017 the VEA load forecast went up by 2 MW or about 1%. The LCR need under single outage conditions is eliminated due to new transmission projects in the area. The overall LCR need remains the same.

# Valley Electric Area Overall Requirements:

|                      | QF/Selfgen<br>(MW) | Muni<br>(MW) | Market<br>(MW) | Max. Qualifying<br>Capacity (MW) |
|----------------------|--------------------|--------------|----------------|----------------------------------|
| Available generation | 0                  | 0            | 0              | 0                                |
|                      |                    |              |                |                                  |

| 2018                                | Existing Generation  | Deficiency | Total MW    |  |
|-------------------------------------|----------------------|------------|-------------|--|
|                                     | Capacity Needed (MW) | (MW)       | Requirement |  |
| Category B (Single) <sup>25</sup>   | 0                    | 0          | 0           |  |
| Category C (Multiple) <sup>26</sup> | 0                    | 42         | 42          |  |

<sup>&</sup>lt;sup>25</sup> A single contingency means that the system will be able the survive the loss of a single element, however the operators will not have any means (other than load drop) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.

<sup>&</sup>lt;sup>26</sup> Multiple contingencies means that the system will be able the survive the loss of a single element, and the operators will have enough generation (other operating procedures) in order to bring the system within a safe operating zone and get prepared for the next contingency as required by MORC.